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Abstract Homogenisation techniques have been successfully used to estimate the mechanical response of
synthetic composite materials, due to their ability to relate the macroscopic mechanical response to the mate-
rial microstructure. The adoption of these mean-field techniques in geo-composites such as shales is attractive,
partly because of the practical difficulties associated with the experimental characterisation of these highly
heterogeneous materials. In this paper, numerical modelling has been undertaken to investigate the applicabil-
ity of homogenisation methods in predicting the macroscopic, elastic response of clayey rocks. The rocks are
considered as two-level composites consisting of a porous clay matrix at the first level and a matrix-inclusion
morphology at the second level . The simulated microstructures ranged from a simple system of one inclu-
sion/void embedded in a matrix to complex, random microstructures. The effectiveness and limitations of the
different homogenisation schemes were demonstrated through a comparative evaluation of the macroscopic
elastic response, illustrating the appropriate schemes for upscaling the microstructure of shales. Based on
the numerical simulations and existing experimental observations, a randomly distributed pore system for
the micro-structure of porous clay matrix has been proposed which can be used for the subsequent develop-
ment and validation of shale constitutive models and their flow properties. Finally, the homogenisation tech-
niques were used to predict the experimental measurements of elastic response. The developed methodology
is proved to be a valuable too for verifying the accuracy and performance of the homogenisation techniques.
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1 Introduction

The prediction of the mechanical behaviour of clayey rocks such as shales is of

great importance as these materials play key roles as barriers to fluid flow in a range

of geological and engineering applications such as seals to hydrocarbon reservoirs

and CO2 storage sites, and also as nuclear waste repositories. There is a surprising

lack of experimental geomechanical data on well-characterised shales, which are

nevertheless essential for populating numerical models with which to predict the

mechanical response of shales subjected to changes in the stress regime as a result,

for example, of hydrocarbon production or CO2 injection. This is due in part to dif-

ficulties in obtaining well-preserved core samples and the cost and time involved

in conventional rock mechanics laboratory testing. Furthermore, shales are com-

positionally heterogeneous at different scales, which creates difficulties in relating

macroscopic (e.g. centimetre-scale) properties to the micron to millimetre hetero-

geneities which characterise shales and which are commonly observed under the

microscope.

An alternative approach to estimating mechanical response of composite mate-

rials is to use homogenisation techniques, which have been successfully applied to

synthetic composite materials to account for microstructural arrangements, volume

fractions and material properties of defined constituents such as a matrix and inclu-

sions within that matrix. In order to obtain close-form solutions for the macroscale

behaviour of composite materials, assumptions and simplifications are required

about inclusion shapes, the interaction between the matrix and inclusions and the

interaction between adjacent inclusions. The nature of these assumptions has re-

sulted in a range of homogenization schemes, of which the most popular are the

Dilute Scheme (DS), the Mori-Tanaka (MT), the Self-Consistent Scheme (SCS)

and the Generalized Self-Consistent Scheme (GSCS) [28,17,47,5].

Direct numerical simulations based on microstructural information have been

used not only to provide insights into the overall macroscopic behaviour of multi-

phase media, but also to quantify the applicability and limitations of the different

homogenisation techniques [16,22,29,30,35,36,40,49]. Studies to date have con-

sidered synthetic composite materials with a matrix containing less than 20% of

spherical or cylindrical inclusions; void spaces in the matrix have been assumed to
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be spherical, isolated pores. Results demonstrate that the accuracy of the homogeni-

sation techniques is sensitive to the volume fraction and the shape of inclusions,

along with the stiffness contrast between the inclusions and the matrix.

Shale, a natural geo-composite is inherently more complex than a synthetic ma-

terials but can be considered a two-step composite (Figure 1). Shale comprises (a)

mineral inclusions (e.g. quartz, feldspar, pyrite, calcite) which are highly variable in

both volume fraction and shape, and (b) a clay matrix which contains randomly dis-

tributed voids. The material properties of the clay matrix, which consists of micron-

size clay minerals and sub-micron-size voids, are difficult to quantify. Homogeni-

sation methods have thus been used in conjunction with various assumptions to

characterise the mechanical behaviour of both shales and the solid unit of clay [18,

20,14,33,15,50,37,38,44]. Hornby et al. [18] assumed elliptical clay particles and

used the differential effective medium (DEM) approach to upscale shale properties.

Shen et al. [37] considered pore spaces as spherical, isolated voids and adopted the

MT scheme at both levels of homogenisation. In contrast, Bobko and Ulm [7] pro-

posed a model for nano-granular material with coaxial anisotropic elastic grains for

the clay matrix. Ortega et. al. [33] adopted the concept and implemented SCS in

homogenising shale microstructure.

In this paper, we undertake numerical investigations designed to develop a better

understanding of the capabilities and limitations of the homogenisation methods

as a way of predicting the macroscopic behaviour of shales. Several numerically-

generated microstructure at both level of clayey rocks composite based on SEM

images and stochastic models were simulated for this purpose. The macroscopic

elastic response of these models were compared with the values predicted by the

homogenisation methods accounting for their microstructures. Finally, the model

predictions were compared with experimental measurements to shed light on the

efficacy and limitations of each homogenisation technique.

2 Mean-field homogenisation methods

In order to characterize the macroscopic response of a multi-phase composite, a

representative element volume (REV) is required. This volume (Ω) is defined in

such a way that the macroscopic response for any sample larger than the REV will
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Pores

Porous clay matrix

Inclusions

Fig. 1 Schematic microstructure of shales.

be independent of the sample size. Assuming a linear elastic response for all the

composite constituents, the elastic relationship at both micro and macro scales can

be described as:

σ(x) = C(x) : ε(x) (1)

Σ = Chom : E (2)

where x is the position vector inside the REV, σ(x) is the local stress field, ε(x) is

the local strain field, Σ is the macroscopic stress tensor and E is the macroscopic

strain tensor. C(x) and Chom represent the local and global fourth-order stiffness

tensors, respectively.

If the average of a field, α, over the representative element volume is defined as:

〈α〉 = 1

Ω

∫
Ω

α(x)dx (3)

the macroscopic stress and strain can then be written in the following form:

Σ = 〈σ〉 ; E = 〈ε〉 (4)

In order to relate the macroscopic strain to the local strain field, a linear relation-

ship can be established as:

ε(x) = A(x) : E (5)

where A is the localization tensor which depends on both the homogenisation

scheme and the assumptions made on the mechanical response. Considering a com-

posite withN different phases and combining Eq. 5 into Eq. 4, it can be shown that:
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〈A〉 =
N∑
r=0

fr〈Ar〉 = I (6)

where fr and Ar represent the volume fraction and localization tensor for phase

r, respectively. Consequently, the relationship between the macroscopic stress and

strain can be determined.

σ(x) = C(x) : A(x) : E (7)

Σ = 〈σ〉 = 〈C : A〉 : E (8)

Chom = 〈C : A〉 =
N∑
r=0

frCr : Ar (9)

where Cr is the stiffness tensor for phase r. If the continuous phase representing

the composite matrix which surrounds the remaining constituents (see Figure 1) is

assigned as phase 0, Eq. 9 can be re-written as:

Chom = C0 +
N∑
r=1

fr(Cr − C0) : Ar (10)

The analytical expression for both the localization tensor and the effective ho-

mogenised stiffness tensor will be summarised for each of the four homogenisation

schemes adopted in this study, namely the Dilute Scheme, the Mori-Tanaka model

(MT), the Self-Consistent Scheme (SCS), and the Generalized Self-Consistent Scheme

(GSCS). For more information on the derivations and assumptions of these schemes

readers are referred to Zaoui [47], Chateau and Dormieux [9], Benveniste [5] and

Guery et al. [15].

2.1 Dilute Scheme

In the Dilute Scheme, the primary assumption is that the concentration of inclu-

sions in the matrix is small so that there is no interaction between them and their

separation is well-defined. This leads to a solution for composites with low concen-

trations of inclusions based on a single inclusion embedded in an infinite matrix. In

this case, the localisation tensor for phase r can be defined as follows:
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Ar =
[
I+ P0

Ir
: (Cr − C0)

]−1 (11)

where P0
Ir

is the Hill’s tensor which is related to the Eshelby tensor and is in general

a function of the shape and orientation of the rth inclusion as well as the stiffness

tensor of the matrix phase (see Appendix A1). The corresponding homogenised

stiffness tensor can be derived as:

Chom = C0 +
N∑
r=1

fr
[
(Cr − C0)

−1 + P0
Ir

]−1 (12)

2.2 Mori-Tanaka Scheme

The Mori-Tanaka model was developed in a similar way as the Dilute Scheme by

including an extra term in order to account for the interaction between inclusions.

In this case, the localisation tensor, Ar, was given as:

Ar = [I+ P0
Ir
: (Cr − C0)]

−1 :

[ N∑
s=0

fs[I+ P0
Ir
: (Cs − C0)]

−1
]−1

(13)

and the corresponding homogenised effective stiffness tensor can be obtained as:

Chom = C0 +
N∑
r=1

fr[(Cr −C0)
−1 + P0

Ir
]−1
[ N∑
s=0

fs[I+ P0
lr
: (Cs−C0)]

−1
]−1

(14)

2.3 Self-Consistent Scheme

In the Self-Consistent scheme each inclusion is assumed to be embedded in an un-

known homogenised medium, so that the localization tensor Ar will contain the ho-

mogenised effective stiffness tensor Chom. Due to the implicit form of this scheme,

an iterative algorithm is required allowing the homogenised stiffness tensor to be

obtained in a straightforward way. The homogenised localisation tensor, Ahom
r , for

the Self-Consistent Scheme is thus given as:

Ahom
r = [I+ Phom

lr
: (Cr −Chom)]

−1 :

[ N∑
s=0

fs[I+ Phom
lr

: (Cs−Chom)]
−1
]−1

(15)
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and the homogenised effective elasticity tensor, for composites with inclusions hav-

ing identical orientation and shape, is derived as:

Chom =
N∑
r=0

frCr : [I+ Phom
lr

: (Cr − Chom)]
−1 (16)

2.4 Generalized Self-Consistent Scheme

This scheme was developed on a similar basis as the SCS with the difference that

the inclusion is assumed to be surrounded by some of the matrix material and sub-

sequently embedded in the homogenised medium. The determination of the closed-

form solution for this scheme is not as straightforward as in the other models, but

several solutions have been proposed based on different assumptions [11,5]. In the

case of an isotropic composite material including one type of spherical inclusion,

the bulk and shear moduli were obtained as:

κc =
f0κ0(4µ0 + 3κi) + fiκi(4µ0 + 3κ0)

f0(4µ0 + 3κi) + fi(4µ0 + 3κ0)
(17)

where the subscripts 0, i, and c represent the matrix, inclusion and the homogenised

composite, respectively. It should be noted that both GSCS and MT provide the

same value for the homogenised bulk modulus. The effective shear modulus, µc, of

the composite material can be obtained by solving the following equation:

A

(
µc
µ0

)2

+B

(
µc
µ0

)2

+ C = 0 (18)

where A, B and C are material constants which are provided in Appendix A2.

3 Material Point Method

The effect of interactions between different phases on the mechanical behaviour

of a composite is assessed by using the material point method (MPM), with the

benefit of simulating the detailed geometry of the REV. This method was devel-

oped in fluid dynamics and further developed by Sulsky et.al. [41] and extended by

Sulsky and Schreyer [42] and Bardenhagen and Kober [3] among others to model

solid mechanics problems. Technically, the MPM is a meshless method in which
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the material points that also possess the state variables (position, mass, velocity,

acceleration, stress state, etc), are Lagrangian and represent the discretised contin-

uum. They are independent of the Eulerian fixed computational mesh. Since the

method uses an arbitrary mesh, distortion inherent from the usual Lagrangian for-

mulations is avoided. Conservation of mass is automatically satisfied as the mass

of each point is kept constant during the calculation. At each time step, the in-

formation is initially extrapolated from the material points to the mesh, where the

governing equations are solved and the solutions transferred back to the mesh and

updated [46,21]. Figure 2 shows how the particles, in a Lagrangian formulation

move through the Eulerian mesh.

t t+∆t t+∆t

Fig. 2 Description of a continuum using MPM.

Assuming that the particle quantities such as position, mass, external force, vol-

ume, velocity, stress and strain {xtp,Mp, f
t
p, V

t
p ,v

t
p,σ

t
p, ε

t
p}, have been obtained (ini-

tialised) at time t, the nodal values for mass and momentum can be obtained as:

mt
n =

p∑
i=1

Nn(x
t
i)Mi; mt

nv
t
n =

p∑
i=1

Nn(x
t
i)Miv

t
i (19)

where N is the conventional finite element shape function and p is the total number

of material points inside the element.

The nodal external and internal forces follow straightforwardly as

f ext,tn =

p∑
i=1

Nn(x
t
p)f

t
p ; f int,tn = −

p∑
i=1

V t
pσ

t
p∇Nn(x

t
p) (20)

where ∆N is the first derivative of the shape function.

The total nodal forces f tot,tn = f ext,tn +f int,tn and nodal momentum are subsequently

used in conjunction with the widely used explicit Euler forward time scheme. The

velocities and positions of the particle at time t+∆t are updated as follows:
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vt+∆tp = vtp +∆t
∑

n
Nn(x

t
p)f

t
n/m

t
n (21)

and positions

xt+∆tp = xtp +∆t
∑

n
Nn(x

t
p)(mv)tn/m

t
n (22)

In view of Equation (21), the velocity gradient of the particles can be further

re-written as:

Lt+∆t
p = ∇vt+∆tp =

∑
n
∇Nn(x

t
p)v

t+∆t
n (23)

and the corresponding deformation gradients operators of the finite strain situations

can be directly obtained as:

Ft+∆t
p = (I + Lt+∆t

p ∆t)Ft
p (24)

and the volume changes are updated at the particle level according to:

V t+∆t
p = det(Ft+∆t

p )V 0
p (25)

To account for large strain condition, the Jaumann stress rate is used to update

particle stresses as follows:

σt+∆tp = σtp + (σtpω
t+∆t
p − ωt+∆tp σtp) + Cr : ∆ε

t+∆t
p (26)

∆εt+∆tp =
∆t

2
(Lt+∆t

p + (Lt+∆t
p )T ) (27)

ωt+∆tp =
∆t

2
(Lt+∆t

p − (Lt+∆t
p )T ) (28)

where ∆εp is the incremental linear strain, ωp is the rotation matrix and Cr is the

stiffness tensor for the phase which is assigned to the material point.

Practical implementation of MPM involves more computational issues. For ex-

ample, explicit nature of the presented MPM formulation only allows for adopta-

tion of linear elements; however, the first derivative of shape functions for these ele-

ments are discontinuous which can lead to numerical noise in the calculation known
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as particle crossing problem [3]. Several improvements including using General-

ized Interpolation [1], Spline shape function [2], anti-locking approach [25,26] and

mixed integration [6] were proposed to treat such problem. Here, the computation-

ally efficient method of mixed integration was implemented. In this approach, an

element located inside the continuum body is assumed to be fully filled with ma-

terial points. The state variables are mapped from its material points to the Gauss

points and the integration is carried out in a similar fashion to the conventional

finite element method. However, for an element located around the boundaries of

the continuum body, the conventional MPM integration over the material points is

carried out when the total volume of the material points inside that element is less

than a fraction of the element volume, usually between 0.8 and 0.9. Otherwise, the

element integration is performed similarly to the fully-filled elements. It should be

noted that this approach is only valid for quasi-static simulations. For more details

on the formulation and implementation of this method the reader is referred to [6,

21].

4 Matrix-inclusion morphology

Scanning Electron Microscope (SEM) images of shale samples can provide impor-

tant insights into their microstructure. Figure 3 shows a SEM image on a shale cut

perpendicular to the bedding plane. It can be seen that, at the scale of a few mi-

crometres, shales can be described as composite materials in which the inclusions

are surrounded by the matrix phase. These inclusions are characterised by various

shapes ranging from spherical to angular and including highly irregular shapes for

which the orientation is not clearly defined.

Here, the MPM is used to simulate the mechanical behaviour of shale with differ-

ent microstructures. The numerical results are then compared with the homogeni-

sation schemes described in the previous section in order to evaluate the modelling

capabilities of the mean-field methods in predicting the homogenised behaviour

of highly complex natural composites such as clayey rocks. We extend previous

studies by considering angular inclusion shapes, highly-contrasting matrix and in-

clusion properties, high concentrations of inclusions, three phase composites with

complex random micro-structures. A summary of typical values of elastic proper-
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Fig. 3 Typical SEM image of a shale sample from a cutting section perpendicular to bedding plane.

ties of common mineral inclusions in shale rocks are given in Table 1. Additionally,

the following material properties are assigned to the isotropic porous clay matrix:

Young’s modulus E= 3 GPa Poisson’s ratio v= 0.3 [15].

Table 1 Elastic properties of some common inclusions found in clayey rocks.

Mineral Young’s Poisson’s Indentation Source
modulus ratio modulus

E/(1− v2)

(GPa) (GPa)

Calcite 95 0.27 — Guery et al. [15]
Quartz 101 0.06 — Guery et al. [15]
Pyrite 265.38 0.18 — Whitaker et al. [45]
Feldspars 75.93 0.22 — Bass [4]
Kerogen — — 10.5 Zeszotarski et al. [48]

4.1 Composite with single inclusion

The analytical solutions for the mean-field homogenisation methods were devel-

oped on the basis of a single inclusion with a spherical or elliptical shape, embed-

ded in the matrix phase [49]. Such assumptions do not recognize the natural shape

of inclusions in clayey rocks that are mostly small, angular pieces of hard minerals

such as calcite and quartz. In order to evaluate such analytical solutions and ac-

count for the angularity of real inclusions, it is proposed to explore the simulations

of a single inclusion with a spherical or cubic shape. Due to the symmetry of the

problem under consideration, only one quarter of the REV model with appropriate
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boundary conditions is simulated (Figure 4). Two different loading conditions are

performed by controlling the displacements. In the first loading, a uniform normal

displacement has been applied at the top and two perpendicular lateral boundaries

of the REV model, with normal movements not permitted at the remaining bound-

aries. This loading condition is expected to generate hydrostatic compression and

can be used to estimate the bulk modulus of the REV. In the second loading, a

uniaxial compression is simulated by imposing the vertical displacement at the top

boundary of the REV and fixing the vertical movement at the opposite boundary.

This test was undertaken to estimate the Young’s modulus of the REV.

In addition, an arrangement of eight material points per element, with 8000

points in total number, was determined through a mesh sensitivity analysis carried

out to minimise the discretisation error and improve the accuracy of the results.

This mesh, together with the described loading and boundary conditions, has been

adopted in all simulations unless otherwise mentioned.

Fig. 4 MPM models of the spherical and cubic inclusions embedded in a matrix

Figure 5 shows a comparison of the normalised bulk modulus for single spheri-

cal and cubic inclusions and the values predicted by the different homogenisation

methods, for different volume fractions of the inclusion. The comparison between

the simulated and calculated bulk modulus using the MT and GSCS models are in

good agreement. However, for the SCS, it can be seen that a stiffer behaviour is

predicted for a volume fraction of the inclusion greater than approximately 20%,
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which results in an overestimation of the bulk modulus. The analyses also indicate

that there is no influence of the cubic-shaped inclusion on the homogenised bulk

modulus of the REV.

Comparison of the simulated and calculated normalised Young’s modulus is also

shown in Figure 5. Overall, the numerical results are in good agreement with the

SCS, up to volume fractions of inclusion around 42%. For inclusion concentra-

tions above this threshold, the SCS overestimates the Young’s modulus. Both MT

and GSCS predictions slightly underestimate the Young’s modulus and the predic-

tion error increases with increasing inclusion volume fraction. It should be noted

that the MT and GSCS models predict virtually identical moduli. However, due

to the simplicity of the implementation of MT compared to the GSCS scheme,

this scheme allows a variety of clayey rocks to be investigated, for example with a

transversely isotropic matrix, a multi-phase composite and with different inclusion

shapes. In addition, as the inclusion volume fraction increases above 20%, there

is an underestimation of the effective properties using the DS model, leading to a

softer response. This is due to the concentration of inclusions and their interaction,

which are not accounted for in the formulation of DS.

4.2 Composite with Randomly Distributed Inclusions

Shales are very complex multi-phase composite materials which usually contain

various types of inclusions such as calcite, quartz, pyrite, feldspar, kerogen, etc.

Calcite and quartz constitute the highest volume fractions of inclusions, with other

minerals usually less than 15% [27,33,39]. In addition, there is a significant strength

difference between the major inclusions (calcite/quartz) and the low volume frac-

tion inclusions. For example, pyrite is almost three times stiffer than calcite whereas

kerogen is considered as a very soft substance (see Table 1).

For the final investigation of the predicted results by homogenisation techniques,

they are evaluated for the case of a composite with randomly distributed grains

which is more close to the real microstructure of shales. To increase the level of

complexity, two types of cubic inclusions with different sizes including calcite and

pyrite are considered. The ratio of inclusions volumes to the total volume of REV

are 0.33 and 0.1 for calcite and pyrite grains, respectively. The model consists of
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Fig. 5 Comparison between the results of numerical and mean-field homogenisation methods for normalized bulk and Young’s moduli of the models
with various volume fractions of spherical and cubic inclusions.

18000 material points with eight points per element (Figure 6). The inclusions are

randomly placed in the matrix in such way that they are not in contact with each

other and all of them are surrounded by at least one layer of material points having

the clay matrix properties.

Three random models were generated and both hydrostatic and uniaxial com-

pression tests were carried out. The bulk modulus, Young’s modulus and two com-

ponents of the stiffness tensor obtained from numerical simulation and two ho-

mogenisation schemes are presented in Table 2. Based on the results, MT provides

a very good prediction for bulk modulus and a fair prediction for Young’s modulus.

In addition, although the error of prediction for Young’s modulus using SCS is a

little less than MT at this volume fraction of inclusions, the bulk modulus is over-

estimated. In fact, the results are in agreement with the trend being observed for the

case of a single inclusion. Considering the results obtained for stiffness tensor com-
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Fig. 6 A REV with randomly distributed calcite (black) and pyrite (white) grains; volume fractions are 33% and 1%, respectively.

ponents, no clear advantage can be observed between using MT or SCS to predict

the overall, homogenised stiffness tensor. This is because for an isotropic material,

each component of its stiffness tensor is a function of two elastic constants which

combine the errors obtained for bulk and Young’s moduli.

Table 2 Numerical and mean-field methods results for the random three-phase composite.

Normalized Modulus Kc/K0 Ec/E0 Cc
11/C

0
11 Cc

12/C
0
12

Simulation 1.86 2.34 2.83 2.16
Method MT 1.77 1.97 2.142 1.91

SCS 2.38 2.66 2.91 2.57

Theoretically, the mean-field methods were formulated for N different phases,

which make it possible to study composites with various inclusions. On the other

hand, from a practical point of view, it can be difficult to accurately determine the

volume fraction of each inclusion, especially when its concentration is very low

or has a similar density as the other inclusions. Mineralogical information may be

supplied simply as the volume fraction of clay and non-clay minerals. It is there-

fore of interest to quantify the effect of ignoring low concentrated minerals and

simplifying the shale to two-phase composite on its homogenised response.

Here, a simple example which consists of a small pyrite inclusion placed within

calcite gains has been adopted to study the difference in the homogenised response

between a real composite and a simplified one. The volume fraction of pyrite is

selected based on common values found in shale samples for minor inclusions.

For example, the Kimmeridge shale consists of 30.5% quartz, 2.1% pyrite, 7.2%
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feldspar and the rest form different clay minerals [19]. A model with 26.8% calcite

and 11.3% pyrite is generated. The results of the normalized elastic moduli for the

three-phase composite and the simplified one in which all the clay minerals are as-

sumed to be quartz are presented in Table 3, indicating that the lack of information

about these low concentration minerals may not affect the results significantly. It

can also be observed that the SCS is more sensitivity to this simplification than MT

method. Generally, it can be summarized that this practical simplification appears

to be acceptable.

Table 3 Numerical and mean-field methods results for both three-phase and simplified composite.

Model Three-Phase Comp. Simplified Comp.

Normalized Modulus Kc/K0 Ec/E0 Kc/K0 Ec/E0

Simulation 1.99 2.33 1.98 2.32
Method MT 1.94 2.17 1.92 2.15

SCS 2.68 3.31 2.60 3.16

5 Porous clay matrix

One of the complexities of clayey rocks is that the matrix itself is a porous material

for which the mechanical properties of its solid unit (clay minerals) are poorly con-

strained . Nevertheless, the mechanical properties of the solid clay, in conjunction

with the total porosity of the clay matrix, play a major role in the overall macro-

scopic mechanical response of clayey rocks. Due to the difference in length-scale

between void and porous clay matrix , the homogenisation schemes can be adapted

to account for the effects of porosity on the mechanical response of the matrix and

to back-analyse the solid clay properties. In this section, the accuracy and capa-

bilities of the homogenisation methods for predicting the mechanical response of

porous composites are investigated. According to the experimental data available

in the literature, the porosity of clay matrix in shales varies between 2 to 40% [27,

33,39]. Moreover, determination of the elastic properties of solid unit of clay is

still an open topic, which is out of the scope of this research, with different values

obtained by different researchers. Here, values of 5 GPa for Young’s modulus (E)

and 0.33 for Poisson’s ratio (v) were adopted for the solid unit of clay [37].
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5.1 Simplified porous matrix micro-structure

As the real microstructure of the porous clay matrix is difficult to characterise accu-

rately, two different idealized models are considered for the arrangement of voids

and clay particles. In the first model, it is assumed that the voids are embedded

in solid clay, similar to the matrix-inclusion placement; in the second model, the

solid unit of clay is considered to be spherical particles in contact with each other

and forming a network of connected pores (Figure 7). Both models are subject to

hydrostatic loading with different porosities.

Fig. 7 MPM models for isolated void (left) and connected pore network (right). The black particles are deleted to generate voids.

The results of the normalized bulk moduli are plotted in Figure 8 along with the

predicted moduli by the mean-field homogenisation schemes. The MT method is

able to predict the effective bulk modulus for a porosity ranging between 0 and 1.

In contrast, the SCS prediction of the same effective modulus is only valid up to

porosity values around 0.5, after which the stiffness reaches non-physical values.

The same observation can be made for the DS model, for which non-physical val-

ues are predicted for porosities above 0.33. In addition, from Figure 8 it can be

concluded that the stiffness response of the first model with isolated voids is in

good agreement with the MT results. In contrast, the second model, with a pore

network, shows a good agreement with the SCS predictions.

Published results of indentation tests and imaging techniques along with theoreti-

cal concepts in granular media are next used to elucidate which of the two modelled

arrangements might be more realistic to represent the clay matrix microstructure. In

work undertaken by Ulm and Abousleiman [43] on different shale samples, nanoin-
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Fig. 8 Comparison between the results of numerical and homogenisation methods for normalized bulk modulus of a clay matrix with isolated
(crosses) and connected (triangles) pores.

dentation tests highlighted the linear relationship between the indentation modulus

of clay matrix and porosity, with the indentation moduli reaching the value of zero

when the porosity approached a value of approximately 0.5 (Figure 9). Addition-

ally, in the model with spherical clay particles and pore network (see Figure 7), if

the radius of particles is decreased until the porosity reaches a value of approxi-

mately 0.52, then the contact between the particles is completely lost. This value is

almost equal to the one observed by Onoda and Liniger [32] for the highest possible

porosity in the case of granular packing of having uniform spheroids.

The relationship between SCS-predicted, normalized bulk modulus and poros-

ity is almost linear and predicts that the stiffness becomes zero when the porosity

is 0.5 (Figure 8). It therefore appears that the SCS is an appropriate model with

which to homogenize a porous clay matrix, as its results are well matched with

both theoretical results and experimental observations.

5.2 Porous Matrix with Random pores

Having evaluated the performance of the homogenisation methods with simplified

pore systems, a realistic 3D stochastic pore network model obtained from high res-

olution SEM images of a shale rock [23] has also been simulated. The stochastic

model consists of a cube with 200 voxels in each dimension, with a property of

either a pore or solid assigned to each voxel. Three smaller cubes with 25 voxels in

each dimension having different porosities were selected from inside the stochas-
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Fig. 9 Indentation moduli parallel (M3) and perpendicular (M1) to bedding plane of shale samples versus the porosity (Modified from Ulm and
Abousleiman [43]).

tic model (Figure 10). The three stochastic samples used in the simulations, are

generated by mapping each voxel into one element.

Figure 11 shows the averaged normalized Young’s moduli in three directions

obtained from numerical simulations. A good agreement can be observed between

numerical results and values predicted by SCS model.

Fig. 10 Stochastic model of porous clay matrix with porosity of 0.32 (pores are represented by grey particles).

It is also well-known that the shale pore system is complex, consisting of both

connected and isolated pores ranging in size from a nanometre to a few micrometres

[8,10,31]. Consequently, the stochastic models seem to represent the experimental

observations on both microstructure and the mechanical response of porous clay.
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Fig. 11 Comparison between numerical and mean-field homogenisation methods results of normalized averaged Young’s modulus in three directions
for the stochastic models.

To further study the mechanical response of these random pore systems, a REV

was considered in which the porosity was randomly distributed through the model.

As there was no restriction on the placement of the pores, a matrix with both iso-

lated and connected pores was formed (Figure 12). Three different target porosities

below and above the threshold of 50% of porosity were considered and six random

models were generated for each target porosity.

Figure 13 shows the numerical predictions of the effective bulk and Young’s

moduli along with the results obtained from the adopted homogenisation schemes.

It can be seen that for the case of a composite with random porosity below 50%, the

SCS provides good predictions compared to the other schemes. It is also observed

that when the porosity exceeds the threshold of 50%, the stiffness converges to-

wards a value of zero. Additionally, the three different random models for each tar-

get porosity produce approximately the same mechanical behaviour which makes

these results reproducible with no noticeable anisotropy induced by the pore net-

work.

Since the microstructure of a porous clay matrix is difficult to characterise, con-

ceptual models of porous clay matrix offer an efficient quantification of its mechan-

ical response. This allows the overall elastic-plastic behaviour of the clayey rocks to

be investigated. When pore spaces embedded in solid clay are assumed to be spheri-

cal and isolated, closed-form solutions for the homogenised elastic-plastic response
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Fig. 12 REV for a matrix with porosity of 0.3 and a random distribution of pores (pores are represented by black particles).
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Fig. 13 Comparison between numerical and mean-field methods results of normalized bulk and Young’s moduli for the model with random porosity.
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can be derived [24,37,38]. However, the choice of simplified, isolated voids in this

study, resulted in a poor prediction of the mechanical response of porous clay.

Using models which assume random pores in a porous clay matrix, the mechan-

ical response is more consistent with the theoretical and experimental results. In

addition, the generation of different random pores system to capture a given target

porosity would not alter the overall mechanical response. The approach followed

here may produce more accurate results when a transversely isotropic elastic re-

sponse along with a suitable failure surface such as Drucker-Prager are considered

for the solid unit of clay.

6 Homogenisation of shale rock elastic response

Shale rocks, in general, are transversely isotropic (TI) in elastic response and it

is well known that this property originates from aligned plate-like clay minerals

within the shale [34]. However, different models have been proposed to explain this

TI response. For example, Hornby et al. [18] assumed that the shale matrix consists

of elliptical pores and elliptical isotropic elastic clay particles, and these elementary

building blocks are the source of anisotropy. This idea has been adopted in some of

the subsequent studies [20,50,44]. Ortega et al. [33], on the other hand, implicitly

considered the effect of the plate-like elements by a TI set of elastic constants for

the solid unit of the matrix.

In this section, homogenisation formulations are used to predict experimental

measurements of the elastic properties of shale core samples. Shales with differ-

ent inclusion volume fractions were selected to show how understanding of the

performance of each mean-field homogenisation formulation could help to better

interpret the predictive results.

In previous sections, it was shown that SCS is a suitable method to homogenise

the elastic response of the clay porous matrix. However, the overall elastic prop-

erties of matrix-inclusion morphology follows the described formulations up to a

certain level of inclusion concentration. Here, the TI properties of solid clay deter-

mined by Ortega et al. [33] is adopted in conjunction with shale characterisations,

porosity and mineralogical data, for three shale samples to predict their macro-

scopic elastic constants. SCS is selected for the first level of homogenisation of the
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porous clay, and the matrix-inclusion is upscaled using both MT and SCS. Table 4

contains the shales’ characterisations which are required to homogenise their me-

chanical response. In addition, Eq. 29 provides the adopted five elastic constants of

TI solid clay in which axis 3 is the axis of symmetry for a TI medium. The inclusion

properties can also be found in Table 1. The porosity (φ) is assumed to be entirely

in the shale matrix which is the porous clay in these samples. Thus, the measured

shale porosity (φshale) provided in the references should be converted to the poros-

ity of the clay matrix as φclay = φshale/fmatrix in order to be considered in the first

level of homogenisation. It should be noted that the overall elastic response is now

TI which requires the appropriate Hill’s tensor (P0
Ir

). For the explicit formulae of

the components of this tensor for a spherical inclusion embedded in a transversely

isotropic matrix, readers are referred to Fritsch and Hellmich [13].

Table 4 Shale samples characterisation (Extracted from Hornby [19] and Domnesteanu et al. [12])

Sample Kimmeridge Shale Jurassic Shale Domnesteanu et al.

Mineralogical Data Volume fraction (%)

Quartz 30.5 31 44.4

Calcite —- 2 —-

Pyrite 2.1 5 1.5

Feldspar 7.2 4 6.5

Porous clay (fmatrix) 60.2 58 47.6

Sum of inclusions (fInc) 39.8 42 52.4

Shale porosity (φshale) 2.5 10.5 14

Matrix porosity (φmatrix) 4.15 18.1 29.4

C11 = 44.9; C33 = 24.2; C13 = 18.1;

C44 = 3.7; C66 = 0.5(C11 − C12) = 11.6
(29)

Here, the predicted values for two elastic constants of C11 and C33 which are re-

spectively related to directions parallel and perpendicular to bedding, are compared

with the experimental measurements (Figure 14). It can be concluded that the pre-

dicted values of SCS are comparable with the experimental results for Kimmeridge

and Jurassic shales but do not perform well for the sample from Domnesteanu et

al. [12]. In order to understand this prediction error, we need to refer back to Fig-

ure 4 and 5 where the basic problem of a single inclusion was considered. It was

illustrated that for an inclusion concentration above 42 % neither SCS nor MT can

provide a good prediction of matrix-inclusion morphology. The third shale sam-
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ple contains around 53 % inclusion which is higher than the applicability of these

formulations. The elastic properties of this shale should lie between the predicted

values of SCS and MT. Figure 14 clearly shows the elastic properties are underesti-

mated or overestimated by tthe MT and SCS, respectively. On the whole, the key to

successful and reliable implementation of homogenisation formulations is to fully

understand their limitations, range of applicability and representative microstruc-

ture.
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Fig. 14 Experimental results versus predicted values for elastic response of three shale samples with SCS at the fist level and both SCS and MT at
the second level of homogenisation.

7 Conclusion

A comparative evaluation study of the macroscopic elastic response of clayey rocks

using different homogenisation schemes and numerical simulations that account for

microstructures has been carried out. Clayey rocks were considered to be two-level

composites consisting of solid clay with pores at the first level and a porous matrix

with solid mineral inclusions at the second level.

The simulation results of matrix-inclusion morphology presented here reveal that

MT and GSCS homogenisation schemes provide the most accurate predictions of

the homogenised bulk modulus; the SCS model overestimated the bulk modulus,

particularly when the volume fraction of inclusions is high. In contrast, the Young’s

modulus is better predicted by the SCS model, for materials with up to 42% vol-
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ume fraction of inclusions. Consequently, no clear advantage was offered by either

scheme in predicting the homogenised stiffness matrix, for which all the compo-

nents are functions of the two elastic constants, i.e. the bulk and shear moduli.

Two different microstructures for the porous clay matrix were considered, one

consisting of isolated pores and a second with a connected pore network. For a

system with isolated pores, the MT model more accurately reproduces the macro-

scopic response, whilst the SCS model is more effective for a matrix with a pore

network. In addition, pore networks for shales with (a) randomly distributed pores

and (b) stochastically-developed pore networks using SEM images have been sim-

ulated and the results compared with those obtained using homogenisation tech-

niques. In both cases, the SCS model gives the best prediction of the macroscopic

rock stiffness response, with an almost linear porosity-stiffness relationship up to

50% porosity, similar to experimental studies on the mechanical response of the

clay matrix in shales .

These results, along with the experimental data which suggest that most pores

in shales are connected, show that the SCS is the most appropriate model with

which to homogenize the elastic properties of a porous clay matrix. Importantly,

the conceptual, randomly distributed pore system could be adopted as a model for

clay matrix with which to study the macroscopic elastic-plastic response and flow

properties of fine-grained sedimentary rocks dominated by a porous clay matrix.

Finally, the homogenisation techniques were used to predict experimental mea-

surements of shale elastic response of three well-characterised shales with different

porosities and inclusion volume fractions covering a wide range of microstructure.

A numerical experiment has been performed, and the results confirm the suitabil-

ity of the method to capture the response of real complex microstructure of shales.

This reveals the importance of undertaking numerical studies when assessing the

applicability and limitations of homogenisation techniques.
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A Appendix

A.1 Hill’s tensor

For the case of local and global isotropic behaviour with spherical inclusions, the Hill’s tensor is obtained as follows:

P0
Ir

=
β0

2µ0
K+

α0

3κ0
J (30)

α0 =
3κ0

3κ0 + 4µ0
(31)

β0 =
6(κ0 + 2µ0)

5(3k0 + 4µ0)
(32)

where κ0 and µ0 are the clay matrix bulk and shear moduli, respectively. K and J denote the spherical and deviatoric isotropic operators which are
defined as follows:

J =
1

3
I × I (33)

K = I− J (34)

where I and I are the second and forth order identity tensors, respectively.
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A.2 GSCS’ shear modulus

For a composite with isotropic matrix and spherical inclusions, the GSCS shear modulus can be expressed using the following three constants:

A = 8(
µi

µ0
− 1)(4− 5v0)η1f

10
3

i − 2(63(
µi

µ0
− 1)η2 + 2η1η3)f

7
3
i

+252(
µi

µ0
− 1)η2)η2f

5
3
i − 50(

µi

µ0
− 1)(7− 12v0 + 8v20)η2fi

+4(7− 10v0)η2η3

(35)

B = −4(
µi

µ0
− 1)(1− 5v0)η1f

10
3

i + 4(63(
µi

µ0
− 1)η2 + 2η1η3)f

7
3
i

−504(
µi

µ0
− 1)η2)η2f

5
3
i + 150(

µi

µ0
− 1)(3− v0)v0η2fi

+3(15v0 − 7)η2η3

(36)

C = 4(
µi

µ0
− 1)(5v0 − 7)η1f

10
3

i − 2(63(
µi

µ0
− 1)η2 + 2η1η3)f

7
3
i

+252(
µi

µ0
− 1)η2f

5
3
i + 25(

µi

µ0
− 1)(v20 − 7)η2fi

−(7 + 5v0)η2η3

(37)

with
η1 = (

µi

µ0
− 1)(49− 50viv0) + 35(

µi

µ0
)(vi − 2v0) + 35(2vi − v0) (38)

η2 = 5vi(
µi

µ0
− 8) + 7(µi + µ0 + 4) (39)

η3 = (
µi

µ0
)(8− 10v0) + (7− 5v0) (40)

where µ is the shear modulus, v is the Poisson’s ratio, f is the volume fraction and the subscripts 0 and i refer to the matrix and inclusions, respectively.




