3,076 research outputs found
High-pT pi0 Production with Respect to the Reaction Plane Using the PHENIX Detector at RHIC
The origin of the azimuthal anisotropy in particle yields at high pT (pT > 5
GeV/c) in RHIC collisions remains an intriguing puzzle. Traditional flow and
parton energy loss models have failed to completely explain the large v2
observed at high pT. Measurement of this parameter at high pT will help to gain
an understanding of the interplay between flow, recombination and energy loss,
and the role they play in the transition from soft to hard physics. Neutral
mesons measured in the PHENIX experiment provide an ideal observable for such
studies. We present recent measurements of \piz yields with respect to the
reaction plane, and discuss the impact current models have on our understanding
of these mechanisms.Comment: Contribnution to the proceedings of Hot Quarks 2006, 15-20 May 2006,
Villasimius, Sardini
Transverse Spin at PHENIX: Results and Prospects
The Relativistic Heavy Ion Collider (RHIC), as the world's first and only
polarized proton collider, offers a unique environment in which to study the
spin structure of the proton. In order to study the proton's transverse spin
structure, the PHENIX experiment at RHIC took data with transversely polarized
beams in 2001-02 and 2005, and it has plans for further running with transverse
polarization in 2006 and beyond. Results from early running as well as
prospective measurements for the future will be discussed.Comment: 6 pages, 2 figures, presented at Transversity 2005, Como, Ital
Suppression of soft nuclear bremsstrahlung in proton-nucleus collisions
Photon energy spectra up to the kinematic limit have been measured in 190 MeV
proton reactions with light and heavy nuclei to investigate the influence of
the multiple-scattering process on the photon production. Relative to the
predictions of models based on a quasi-free production mechanism a strong
suppression of bremsstrahlung is observed in the low-energy region of the
photon spectrum. We attribute this effect to the interference of photon
amplitudes due to multiple scattering of nucleons in the nuclear medium.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Let
Recommended from our members
Inclusive J/Ï production at mid-rapidity in pp collisions at âs = 5.02 TeV
Inclusive J/Ï production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (|y| < 0.9) in the dielectron decay channel down to zero transverse momentum pT, using a data sample corresponding to an integrated luminosity of Lint = 19.4 ± 0.4 nbâ1. The measured pT-integrated inclusive J/Ï production cross sec- tion is dÏ/dy = 5.64 ± 0.22(stat.) ± 0.33(syst.) ± 0.12(lumi.) ÎŒb. The pT-differential cross section d2Ï/dpTdy is measured in the pT range 0â10 GeV/c and compared with state-of- the-art QCD calculations. The J/Ï ăpTă and ăpT2ă are extracted and compared with results obtained at other collision energies. [Figure not available: see fulltext.]
Recommended from our members
Measurement of charged jet cross section in pp collisions at s =5.02 TeV
The cross section of jets reconstructed from charged particles is measured in the transverse momentum range of
Recommended from our members
Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at âsNN = 5.02 TeV
The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval â1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.
Recommended from our members
Measurement of Î (1520) production in pp collisions at âs=7TeV and pâPb collisions at âsNN=5.02TeV
The production of the Î (1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s=7TeV and in pâPb collisions at sNN=5.02TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Î (1520) â pK - and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and pâPb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (Ï, K, KS0, p, Î) describes the shape of the Î (1520) transverse momentum distribution up to 3.5GeV/c in pâPb collisions. In the framework of this model, this observation suggests that the Î (1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Î (1520) to the yield of the ground state particle Î remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in pâPb collisions on the Î (1520) yield
Recommended from our members
Measurement of prompt D0, D+, D*+, and DS+ production in pâPb collisions at âsNN = 5.02 TeV
The measurement of the production of prompt D0, D+, D*+, and DS+ mesons in protonâlead (pâPb) collisions at the centre-of-mass energy per nucleon pair of sNN = 5.02 TeV, with an integrated luminosity of 292 ± 11 ÎŒbâ1, are reported. Differential production cross sections are measured at mid-rapidity (â0.96 < ycms< 0.04) as a function of transverse momentum (pT) in the intervals 0 < pT< 36 GeV/c for D0, 1 < pT< 36 GeV/c for D+ and D*+, and 2 < pT< 24 GeV/c for D+ mesons. For each species, the nuclear modification factor RpPb is calculated as a function of pT using a proton-proton (pp) ref- erence measured at the same collision energy. The results are compatible with unity in the whole pT range. The average of the non-strange D mesons RpPb is compared with theoretical model predictions that include initial-state effects and parton transport model predictions. The pT dependence of the D0, D+, and D*+ nuclear modification factors is also reported in the interval 1 < pT< 36 GeV/c as a function of the collision centrality, and the central-to-peripheral ratios are computed from the D-meson yields measured in different centrality classes. The results are further compared with charged-particle measurements and a similar trend is observed in all the centrality classes. The ratios of the pT-differential cross sections of D0, D+, D*+, and DS+ mesons are also reported. The DS+ and D+ yields are compared as a function of the charged-particle multiplicity for several pT intervals. No modification in the relative abundances of the four species is observed with respect to pp collisions within the statistical and systematic uncertainties. [Figure not available: see fulltext.]
- âŠ