57 research outputs found

    Enhanced Positioning Bandwidth in Nanopositioners via Strategic Pole Placement of the Tracking Controller

    Get PDF
    Funding: This research received no external funding.Peer reviewedPublisher PD

    Application of a Fractional Order Integral Resonant Control to increase the achievable bandwidth of a nanopositioner

    Get PDF
    The congress program will essentially include papers selected on the highest standard by the IPC, according to the IFAC guidelines www.ifac-control.org/publications/Publications-requirements-1.4.pdf, and published in open access in partnership with Elsevier in the IFAC-PapersOnline series, hosted on the ScienceDirect platform www.sciencedirect.com/science/journal/24058963. Survey papers overviewing a research topic are also most welcome. Contributed papers will have usual 6 pages length limitation. 12 pages limitation will apply to survey papers.Publisher PD

    A Modified Linear Integral Resonant Controller for suppressing jump-phenomenon and hysteresis in micro-cantilever beam structures

    Get PDF
    Credit author statement James MacLean: developed the theory and performed the simulations. Sumeet S. Aphale: supervised the overall research, helped with theoretical development, presentation of results and document formatting.Peer reviewedPostprin

    High-bandwidth nanopositioning via active control of system resonance

    Get PDF
    Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant Nos. U2013211 and 51975375), the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems, China (Grant No. GZKF-202003), and the Binks Trust Visiting Research Fellowship (2018), University of Aberdeen, UK, awarded to Dr. Sumeet S. Aphale.Peer reviewedPublisher PD
    corecore