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Abstract: Piezoactuated nanopositioners are an integral component in Scanning Probe Microscopes
(SPM). The imaging application of SPMs necessitate the loading of the nanopositioning platform with
various samples. This causes an increase in mass thereby altering the dynamics of the system. Various
methods have been proposed to control uncertain systems such as H ., robust control, u-synthesis and
mixed p-synthesis. Additionally, low-order damping controllers, such as Integral Resonance Control
(IRC) and Positive Position Feedback (PPF), have been shown to be robustly stable via the negative
imaginary lemma. In this paper, IRC is used as a benchmark for robust performance, and robust
controllers are developed using the aforementioned methods. It is found that the best performance, in
terms of the H., norm over the range of uncertainty, is achieved using the IRC control scheme. In
addition, IRC provides more accurate tracking of a reference signal.
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1. INTRODUCTION

The use of piezoelectric stack-actuated nanopositioning plat-
forms in scanning probe microscopy presents a challenge in
robust control under uncertainty due to loading. By modelling
a nanopositioning platform as a mass-spring-damper system
[Fleming (2010)], it can be seen that loading a sample onto the
platform increases the mass of the platform, thereby altering the
system dynamics, e.g. a reduction of the resonance frequency.
Typical open-loop control methods, such as model-based inver-
sion [Croft et al. (2001)], are not applicable as these require a
highly accurate model of the system which cannot be obtained
due to the variability of the mass. This necessitates the use
of closed-loop control techniques in order to achieve accurate
positioning in uncertain systems. Two methods are considered:
robust control, and the combination of damping and tracking
controllers.

Robust control uses optimisation techniques, such as H., and
p-synthesis, to develop high-performing controllers by min-
imising a cost function which defines the performance ob-
jectives. Successful implementation of H., robust control in
nanopositioning applications has been reported in the literature
[Salapaka et al. (2002); Sebastian and Salapaka (2005); Se-
bastian et al. (2008)]. Whilst the authors are unaware of any
application of u-synthesis in nanopositioning, it has found use
in comparable systems. Moser (1993) shows an implementation
of p-synthesis control in flexible structures, and Tayebi et al.
(2008) presents an application in robotic manipulators. These
applications are examples of collocated systems, for which the
same control methods can be utilised [Aphale et al. (2007);
Pereira et al. (2011)]. This suggests that the use of p-synthesis
in nanopositioning applications is feasible.

Another prevalent method for the control of nanopositioning
systems is the use of damping controllers, such as Integral
Force Feedback (IFF) [Preumont et al. (2008)], Integral Res-

onance Control (IRC) [Aphale et al. (2008b)], Positive Position
Feedback (PPF) [Fanson and Caughey (1990)], Positive Veloc-
ity and Position Feedback (PVPF, also known as Polynomial
Based Control) [Bhikkaji et al. (2007)] and Resonant Control
[Aphale et al. (2008a)], in conjunction with an integral tracking
controller in an external feedback loop. It has been shown that
IRC, PPF, and Resonant Control are strictly negative-imaginary
(SNI). For a nanopositioning system with collocated sensor
actuator pairs, these controllers provide robust stability via the
negative-imaginary lemma [Peterson and Lanzon (2010)]. In
addition, the use of controllers with integral action has been
shown to provide a significant reduction in the effects of inher-
ent nonlinear behaviours such as hysteresis and creep [Devasia
et al. (2007)].

In this work, IRC is used as a benchmark to design robust
controllers using H .., p-synthesis, and mixed p-synthesis op-
timisation techniques. This is achieved by choosing weighting
functions which act as upper bounds on the functions measured
from the reference to the regulated outputs, in this case, the
error, sensor output, and control signal. Using these weighting
functions provides a simple measure of improved performance,
that is, the robust controller provides improved performance
over IRC if the H ., norm of the regulated system is less than
that of IRC. IRC is chosen as it provides robust stability, has
low order and a simple design procedure.

The paper is structured as follows: Section 2 develops a model
of the system with variable mass. The method of controller de-
sign for both IRC and the three robust controllers is described in
Section 3. Section 4 provides an overview of the experimental
system upon which the models are based and the derivation of
the plant model. In this section, simulated and experimental
results in both the frequency and time domain are presented.
The performance of each control scheme is analysed in both
the nominal- and worst-case to evaluate the effect of a change

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.2447



10896

n
o

)
)
T

Magnitude (dB)

102 103

Frequency (H 2)

o_‘

o

o
]

n
(=3
<]

Phase (deg)

L |==== Measured FRF
= = Model
10 102 10°

Frequency (H z)
(@

Douglas Russell et al. / [FAC PapersOnLine 50-1 (2017) 10895-10900

n
o
T

N
=]

T
-

Magnitude (dB)

A
S
o_‘

102 10°
Frequency (H z)

o
]

~~
>
O
E 100 [ | Unloaded (wp =718.4 Hz)
0 —— 5 g (wn, = 695.1 Ho) I
s L |— 10 g (wn =671.8 Hz)
-200
= 15 -6485H =
[a glwn = .5 Hz) *
=
10’ 102 10°

Frequency (H z)
(b)

Fig. 1. (a) Measured frequency response and model of the nominal system, and (b) Measured frequency response of the system

under loading.

in mass on closed-loop performance. Section 5 concludes the
paper.

2. SYSTEM MODELLING

A single axis of a nanopositioning platform can be modelled as
a mass-spring-damper system, having equation of motion

Myd + cpd + kd = F,, (D
where M, is the mass of the platform, c; is the damping
coefficient of the flexures, k is the sum of the spring stiffness of

the flexures, k¢, and the actuator, k,, and Fy, is the force applied
by the actuator.

Taking the Laplace transform of the equation of motion, the
transfer function measured from the applied force, F,, to the
displacement, d, is

d 1

G = =— . 2

ara (3) F, M,s®+cps+k )

The force generated by the actuator can be related to the
unconstrained piezoelectric expansion, ¢, by

F, = ka(;y (3)
and § can be related to the reference input voltage, 7, by
§ = gsrr = dzzngar, “)

where ¢s5, is a constant gain which is the product of the
piezoelectric strain constant, dss, the number of actuator layers,
n, and the amplifier gain, g,.

Likewise, the displacement, d, can be related to the measured
voltage, y, by

d = gsy, (@)
where g is the sensor gain. The transfer function from the
reference input, r, to the measured voltage, ¥, is then

kagsr

Yy gs
G(s\=2=— 9
»(5) r Mys?+crs+k
9
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Fig. 2. Block diagram of the closed-loop system with regulated
outputs.

T —>

where g = k,gsr/gs, or substituting standard variables

0.2

52 + 20pwps + w2’
It is known from experimentally measured results that nanopo-
sitioning platforms have multiple resonance modes. However,
the behaviour of nanopositioners is dominated by a single low
frequency resonance mode, and so, it is not necessary to model
any higher-order modes.

Gp(s) = (N

In addition to the plant dynamics, the amplifier and sensor affect
the measured response and can be modelled as first-order low
pass filters, i.e.

Hy(s) =

Ws
s+ ws’

Waq,
5+ we

®

H,(s) =

A small time-delay is also observed in the experimentally
measured frequency response due to hardware/software latency,
and is modelled as a second-order pade approximation, as in
[San-Millan et al. (2015)], giving

s2—as+b
D(s) = ———.
() s2+as+b ©
The full model of the plant is then given by:
G(s) = Hy(s)D(s)Gp(s)Ha(s). (10)

3. CONTROLLER DESIGN

It is desired that the closed-loop system provide low error at
low frequencies, high roll-off at high frequencies (to reduce
the effects of noise), and bounded control signal (to prevent
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Fig. 3. The (a) sensitivity function, (b) complimentary sensitivity function, and (c) function measured from the reference to the
control signal, showing both the nominal and worst-case responses.

saturation). This is achieved by regulating the relevant outputs
as shown in Fig. 2.

One method of ensuring low errors at low frequencies and high
roll-off at high frequencies is the use of damping and tracking
controllers. In this work, we consider IRC. IRC is chosen as it is
known to be robustly stable via the negative imaginary lemma
and is used as a benchmark of robust performance.

The IRC control scheme consists of a first order damping
controller, Cy4(s), in positive feedback, and an integral tracking
controller, C;(s), implemented in negative feedback, given by

k k
Ca(s) = ~—. Cils) = (11)

As the damping controller is SNI, the inner damping loop is
robustly stable if

|G (j0)Ca(j0)| < 1. (12)
This inequality holds if
o2
d<—7=—dc. (13)
Wy
The feedthrough term, d, is chosen to be d = —2d., as in

[Namavar et al. (2014)], which ensures unity DC gain in the
damping loop as well as robust stability. The damping gain,
k, is chosen using root locus analysis to ensure the greatest
achievable damping. The tracking gain, k;, is chosen as the
largest value such that the closed-loop magnitude response does
not exceed unity gain.

The robust control problem is formulated to minimise the error
at low frequencies, maximise the roll-off at high frequencies,
and bound the control signal. The cost function is defined as

WS
W, T

u

<7/u (14)

o0

where S is the sensitivity function, 7" is the complimentary
sensitivity function, and U is the function measured from the
input to the control signal. The plant, shown in Fig. 2, is then
defined as

15)

The weighting functions, W, W; and W,,, are chosen such
that their inverse acts as an upper bound of the corresponding
function of the IRC design, i.e.

[WsStrc|loo = IWiTtrC |00 = [WuUrrc|loo = 1. (16)

Linear
~_ Amplifiers

X-Y Nanopositioner
e JU . el A

ol
)uﬂ[:’fql I

W °

Capacitive Sensor
e b

|
-

-

Capacitive

Probe Terminal

Block

Fig. 4. A two-axis serial-kinematic nanopositioning platform
designed and constructed by EasyLab, University of
Nevada, Reno, USA.

It follows that the robust controller provides improved perfor-
mance over IRC if

WS WSire
w, T < || WiTrre (17)
Wu U 00 Wu UIRC 0o

over the range of the uncertainty, /. In the following section
three methods, H.,, p-synthesis and mixed p-synthesis, are
used to develop robust controllers which minimise the cost
function.

4. RESULTS AND DISCUSSION
4.1 Experimental Setup

Simulations are performed using models of a two-axis piezo-
electric stack-actuated serial-kinematic long-range nanoposi-
tioning platform designed and constructed by EasyLab, Univer-
sity of Nevada, Reno, USA, pictured in Fig. 4. This provides a
range of approximately 43 m on each axis corresponding to an
applied voltage of 0-200 V. Each axis is driven by a Piezodrive
PDL200 linear voltage amplifier with a gain of 20, and bias of
100 V. The displacement is measured using a Microsense 4810
capacitive displacement sensor and a 2805 measurement probe
providing a range of +50 ym or £10 V.



10898

Hoo

p-Synthesis

Douglas Russell et al. / [FAC PapersOnLine 50-1 (2017) 10895-10900

Mixed p-Synthesis

@
38

@
3
@
3

o

\f’\
— Full order

- - Reduced order|

&
g
&
3

]
%

———

10° 10*

Frequency (H z)

2

£
U
3

3
3
3
3
3

L

°

/

R4

8 3

8 8 o
r;
7
'
:
’
)

Phase (deg)Magnitude (dB)
Phase (deg)Magnitude (dB)

10

£

Frequency (H 2)
(@)

E3

102

Frequency (H z)
(b)

Phase (degMagnitude (dB)

Frequency (H 2)
()

ES

10° 10*

Fig. 5. Frequency response of the full- and reduced-order controllers. The reduced-order models deviate from the full-order model
at high frequencies but are consistent within the bandwidth of interest, depicted by the dotted (---) lines.

Table 1. Controller Performance

Full Order Reduced Order
vl Worst-case gain ~ Order 7m Worst-case gain ~ Order
IRC 1.6045 1.9603 2 1.6045 1.9603 2
Heoo 1.3618 28.463 22 1.8251 21.8045 10
p-Synthesis 1.5568 20.1112 68 1.5569 8.0849 9
Mixed p-Synthesis | 1.8281 1.8281 58 1.8233 1.8233 9
4.2 System Identification W, = 0.315 x s+ 3160
s+ 31.6
The nominal model of the platform dynamics is found via trial s + 4500
and error. Both the sensor and amplifier are modelled as first- Wi = 8.25 x s + 45000
order low pass filters with a cutoff frequency of 10000 Hz and s 4+ 4500
5000 Hz respectively. A time-delay of 65 ps is identified, due Wy =441 x S 45000° 2D

to hardware/software latency, giving:
1.777 x 10052 — 1.64 x 10?15 + 5.046 x 10%°
G(s) = 6 5.5 10 4
5% +1.866 x 10°s° 4 1.355 x 10*"s
+4.549 x 10Ms® + 5.922 x 10'8s?
+9.673 x 10%*s + 1.142 x 10%¢
(18)
as the nominal model. Fig. 1 shows the effect of the addition
of mass in 5 g increments. Each additional 5 g mass causes a
decrease in the resonance frequency of approximately 23.3 Hz.
From this the physical parameters are found as:

M, = 73.369

k=149 x 10°Nm™!

cp = 6.62Nsm ™
g = 6.60 x 10°. (19)
The frequency response of the nominal and perturbed models
are given in Fig. 1. It is observed that the perturbed model
more accurately matches the measured data when cy /M), is

kept constant. The model of the plant dynamics is then defined
as:

16—115x10’68
_ M
Gp(s) = BT
ST
where M,,,,, 1s the nominal mass, and M is an uncertain
parameter with a range of 73.36 to 88.36 g.

(20)

4.3 Controller Design

The IRC damping controller is designed to maximise damping
as in Namavar et al. (2014). The tracking controller is an inte-
grator with the gain chosen such that the magnitude response
does not exceed unity gain. The weighting functions which
bound the IRC response are defined as:

Three methods are used to develop a robust controller for the
uncertain plant: g-synthesis, mixed p-synthesis, and H ., using
the Matlab functions dksyn and hinfsyn respectively.

4.4 Simulated Results

The sensitivity function, complimentary sensitivity function,
and function measured from the reference input, r(¢) to the con-
trol signal, u(t), are plotted in Fig. 3 and the robust performance
metrics are given in Table 1, where ~/u is the H, norm of
the nominal system, and the worst-case gain is the largest H .,
norm of the perturbed system. It is observed that, in the nom-
inal case, the greatest performance is obtained using the H .,
controller. However, the worst-case analysis shows that IRC
provides improved performance over the range of uncertain
mass. Both the H, and p-synthesis controllers perform poorly
as the mass of the platform changes. This is seen as spikes
in the sensitivity and complimentary sensitivity functions. For
the mixed p-synthesis controller, the worst-case is the nominal
case, and so, the performance is not worsened by an increase in
mass. It is noted that the mixed p-synthesis provides the worst
performance in the nominal case.

4.5 Experimental results

To verify the performance of the robust controllers, experiments
were performed using the system described in Section 4.1.
Reduced order controllers are used due to the limitation of
system bandwidth and to simplify implementation. The con-
troller order reduction is achieved by removing the poles and
zeros which occur above 5000 Hz, and the pole/zero cancel-
lations. The robust performance metrics for the reduced order
controllers are given in Table 1 and the frequency responses are
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Table 2. Experimental Results

Bandwidth (Hz) RMS Error (nm)
Nominal =~ Worst-case Og 5¢g 10g 15¢g
IRC 490 496 11.197 10.981 11.224 11.106
Hoo 916 unstable 20.431 unstable  unstable  unstable
p-synthesis 286 304 13.456 13.441 13.507 13.491
Mixed p-synthesis 204 204 20.405 20.370 20.412 20.404

plotted in Fig. 5. It is observed that, although the reduced order
controllers differ from the full order at high frequencies, the re-
sponse is consistent within the bandwidth of interest. Addition-
ally, the use of reduced order controllers does not significantly
reduce the performance in the nominal case and improves the
worst-case performance for each of the three robust controllers.

The closed-loop frequency response for each of the robust
control schemes is plotted in Fig. 6, and the bandwidth for both
the nominal and worst-case given in Table 2. Whilst the H .,
control scheme provides the greatest bandwidth in the nominal
case, it is found that it becomes unstable for an additional mass
greater than 2.06 g. This is less than the mass which causes
the theoretical worst-case (2.29 g) and so cannot be included in
Fig. 6(b). The u-synthesis scheme develops a resonance peak
as the mass is increased but remains stable. The worst-case
mixed p-synthesis is the nominal case and so performance is
not degraded by an increase in mass. The bandwidth of IRC,
pu-synthesis and mixed p-synthesis is consistent over the range
of uncertainty.

The response of the unloaded and loaded system to a 20 Hz
triangle wave is shown in Fig. 7 and the corresponding RMS
error given in Table 2. With the exception of H., due to
instability, the tracking accuracy of the three remaining control
schemes is not significantly altered by an increase in mass. It
can be seen that IRC provides the lowest tracking error, in terms
of both the maximum and rms error, for the range of uncertain
mass. In the case of u-synthesis, small oscillations can be
observed in the error signal, becoming more prominent as the
mass is increased. This is consistent with the development of a
resonance peak, shown in Fig. 6, and is predicted by simulation.

5. CONCLUSION

Imaging applications of nanopositioning platforms require ro-
bustness against perturbations of the system dynamics due
to loading of the platform. Traditionally, robust control has
favoured optimisation techniques such as H, and p-synthesis.
Recent work on negative imaginary control has shown the ro-
bust stability of low-order controllers, such as IRC, for collo-
cated systems. From this paper, the following conclusions can
be drawn:

(1) Hoo provides the greatest theoretical performance in the
nominal case but small increases in mass cause instability
in practice.

u-synthesis gives robust stability but an increase in mass
induces oscillations in the system response.

In terms of the H., norm, mixed p-synthesis shows the
greatest performance over the full range of uncertainty.
In practice, it provides the smallest bandwidth and largest
tracking error of the controllers considered.

IRC has a simple design procedure, low order, and does
not necessitate model order reduction for implementation.
In addition, IRC shows stability and the greatest tracking
accuracy over the range of additional mass.

2
3)

“4)
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