20 research outputs found

    J-PLUS: The Javalambre Photometric Local Universe Survey

    Get PDF
    The Javalambre Photometric Local Universe Survey (J-PLUS) is an ongoing 12-band photometric optical survey, observing thousands of square degrees of the Northern Hemisphere from the dedicated JAST/T80 telescope at the Observatorio Astrofisico de Javalambre (OAJ). The T80Cam is a camera with a field of view of 2 deg(2) mounted on a telescope with a diameter of 83 cm, and is equipped with a unique system of filters spanning the entire optical range (3500-10 000 angstrom). This filter system is a combination of broad-, medium-, and narrow-band filters, optimally designed to extract the rest-frame spectral features (the 3700-4000 angstrom Balmer break region, H delta, Ca H+K, the G band, and the Mg b and Ca triplets) that are key to characterizing stellar types and delivering a low-resolution photospectrum for each pixel of the observed sky. With a typical depth of AB similar to 21.25 mag per band, this filter set thus allows for an unbiased and accurate characterization of the stellar population in our Galaxy, it provides an unprecedented 2D photospectral information for all resolved galaxies in the local Universe, as well as accurate photo-z estimates (at the delta z/(1 + z) similar to 0.005-0.03 precision level) for moderately bright (up to r similar to 20 mag) extragalactic sources. While some narrow-band filters are designed for the study of particular emission features ([O II]/lambda 3727, H alpha/lambda 6563) up to z < 0.017, they also provide well-defined windows for the analysis of other emission lines at higher redshifts. As a result, J-PLUS has the potential to contribute to a wide range of fields in Astrophysics, both in the nearby Universe (Milky Way structure, globular clusters, 2D IFU-like studies, stellar populations of nearby and moderate-redshift galaxies, clusters of galaxies) and at high redshifts (emission-line galaxies at z approximate to 0.77, 2.2, and 4.4, quasi-stellar objects, etc.). With this paper, we release the first similar to 1000 deg(2) of J-PLUS data, containing about 4.3 million stars and 3.0 million galaxies at r < 21 mag. With a goal of 8500 deg(2) for the total J-PLUS footprint, these numbers are expected to rise to about 35 million stars and 24 million galaxies by the end of the survey

    Embryonal Rhabdomyosarcoma of the Ovary and Fallopian Tube: Rare Neoplasms Associated With Germline and Somatic DICER1 Mutations.

    No full text
    DICER1 mutations (somatic or germline) are associated with a variety of uncommon neoplasms including cervical and genitourinary embryonal rhabdomyosarcoma (ERMS). We report a primary ovarian and 2 primary fallopian tube ERMS occurring in 60-, 13-, and 14-year-olds, respectively. The 3 neoplasms exhibited a similar morphologic appearance being polypoid and containing edematous hypocellular areas and hypercellular foci composed of small cells with scant cytoplasm exhibiting rhabdomyoblastic differentiation (desmin, myogenin, myoD1 positive). There was cellular cartilage in all cases and extensive foci of anaplasia, eosinophilic globules, and bone/osteoid in 1 case each. All 3 neoplasms exhibited DICER1 mutations; in 1 of the tubal cases, the patient had a germline mutation and in the other 2 cases, the DICER1 mutations were somatic. Accompanying DICER1 "second hits" were identified in all cases. In 2 of the neoplasms, SALL4-positive glandular structures were present which we speculate may represent an unusual primitive "metaplastic" phenomenon. Our study adds to the literature on ERMS at unusual sites associated with DICER1 mutations. ERMS arising at such sites, especially when they contain cartilage or bone/osteoid, are especially likely to be associated with DICER1 mutations. Pathologists should be aware of this as these may be the sentinel neoplasms in patients with DICER1 syndrome and confirming a germline mutation can facilitate the screening of the individual and affected family members for other neoplasms which occur in this syndrome

    Concomitant Medications and Risk of Chemotherapy-Induced Peripheral Neuropathy

    No full text
    Background Peripheral neuropathy is the dose-limiting toxicity of many oncology drugs, including paclitaxel. There is large interindividual variability in the neuropathy, and several risk factors have been proposed; however, many have not been replicated. Here we present a comprehensive study aimed at identifying treatment and physiopathology-related paclitaxel-induced neuropathy risk factors in a large cohort of well-characterized patients. Patients and Methods Analyses included 503 patients with breast or ovarian cancer who received paclitaxel treatment. Paclitaxel dose modifications caused by the neuropathy were extracted from medical records and patients self-reported neuropathy symptoms were collected. Multivariate logistic regression analyses were performed to identify concomitant medications and comorbidities associated with paclitaxel-induced neuropathy. Results Older patients had higher neuropathy: for each increase of 1 year of age, the risk of dose modifications and grade 3 neuropathy increased 4% and 5%, respectively. Cardiovascular drugs increased the risk of paclitaxel dose reductions (odds ratio [OR], 2.51; p = .006), with a stronger association for beta-adrenergic antagonists. The total number of concomitant medications also showed an association with dose modifications (OR, 1.25; p = .012 for each concomitant drug increase). A dose modification predictive model that included the new identified factors gave an area under the curve of 0.74 (p = 1.07 x 10(-10)). Preexisting nerve compression syndromes seemed to increase neuropathy risk. Conclusion Baseline characteristics of the patients, including age and concomitant medications, could be used to identify individuals at high risk of neuropathy, personalizing chemotherapy treatment and reducing the risk of severe neuropathy. Implications for Practice Peripheral neuropathy is a common adverse effect of many cancer drugs, including chemotherapeutics, targeted therapies, and immune checkpoint inhibitors. About 40% of survivors of cancer have functional deficits caused by this toxicity, some of them irreversible. Currently, there are no effective treatments to prevent or treat this neuropathy. This study, performed in a large cohort of well-characterized patients homogenously treated with paclitaxel, identified concomitant medications, comorbidities, and demographic factors associated with peripheral neuropathy. These factors could serve to identify patients at high risk of severe neuropathy for whom alternative non-neurotoxic alternatives may be considered.Sin financiación5.025 JCR (2019) Q2, 63/244 Oncology2.613 SJR (2019) Q1, 26/214 Cancer Research, 30/367 Oncology, 90/2754 Medicine (miscellaneous)No data IDR 2019UE

    Concomitant Medications and Risk of Chemotherapy-Induced Peripheral Neuropathy.

    Get PDF
    BACKGROUND Peripheral neuropathy is the dose-limiting toxicity of many oncology drugs, including paclitaxel. There is large interindividual variability in the neuropathy, and several risk factors have been proposed; however, many have not been replicated. Here we present a comprehensive study aimed at identifying treatment and physiopathology-related paclitaxel-induced neuropathy risk factors in a large cohort of well-characterized patients. PATIENTS AND METHODS Analyses included 503 patients with breast or ovarian cancer who received paclitaxel treatment. Paclitaxel dose modifications caused by the neuropathy were extracted from medical records and patients self-reported neuropathy symptoms were collected. Multivariate logistic regression analyses were performed to identify concomitant medications and comorbidities associated with paclitaxel-induced neuropathy. RESULTS Older patients had higher neuropathy: for each increase of 1 year of age, the risk of dose modifications and grade 3 neuropathy increased 4% and 5%, respectively. Cardiovascular drugs increased the risk of paclitaxel dose reductions (odds ratio [OR], 2.51; p = .006), with a stronger association for beta-adrenergic antagonists. The total number of concomitant medications also showed an association with dose modifications (OR, 1.25; p = .012 for each concomitant drug increase). A dose modification predictive model that included the new identified factors gave an area under the curve of 0.74 (p = 1.07 × 10-10). Preexisting nerve compression syndromes seemed to increase neuropathy risk. CONCLUSION Baseline characteristics of the patients, including age and concomitant medications, could be used to identify individuals at high risk of neuropathy, personalizing chemotherapy treatment and reducing the risk of severe neuropathy. IMPLICATIONS FOR PRACTICE Peripheral neuropathy is a common adverse effect of many cancer drugs, including chemotherapeutics, targeted therapies, and immune checkpoint inhibitors. About 40% of survivors of cancer have functional deficits caused by this toxicity, some of them irreversible. Currently, there are no effective treatments to prevent or treat this neuropathy. This study, performed in a large cohort of well-characterized patients homogenously treated with paclitaxel, identified concomitant medications, comorbidities, and demographic factors associated with peripheral neuropathy. These factors could serve to identify patients at high risk of severe neuropathy for whom alternative non-neurotoxic alternatives may be considered.This work was supported by the project SAF2015-64850-R (Spanish Ministry of Economy, Industry and Competitiveness, cofunded by the European Regional Development Fund).S

    Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics

    No full text
    PurposeVariability in pharmacokinetics and drug response is shaped by single-nucleotide variants (SNVs) as well as copy-number variants (CNVs) in genes with importance for drug absorption, distribution, metabolism, and excretion (ADME). While SNVs have been extensively studied, a systematic assessment of the CNV landscape in ADME genes is lacking.MethodsWe integrated data from 2,504 whole genomes from the 1000 Genomes Project and 59,898 exomes from the Exome Aggregation Consortium to identify CNVs in 208 relevant pharmacogenes.ResultsWe describe novel exonic deletions and duplications in 201 (97%) of the pharmacogenes analyzed. The deletions are population-specific and frequencies range from singletons up to 1%, accounting for >5% of all loss-of-function alleles in up to 42% of the genes studied. We experimentally confirmed novel deletions in CYP2C19, CYP4F2, and SLCO1B3 by Sanger sequencing and validated their allelic frequencies in selected populations.ConclusionCNVs are an additional source of pharmacogenetic variability with important implications for drug response and personalized therapy. This, together with the important contribution of rare alleles to the variability of pharmacogenes, emphasizes the necessity of comprehensive next-generation sequencing-based genotype identification for an accurate prediction of the genetic variability of drug pharmacokinetics.This work was supported by the Spanish Ministry of Economy and Competiveness (grant SAF2015-64850-R), by the European Union's Horizon 2020 research and innovation program U-PGx under grant agreement 668353, and by the Swedish Research Council (grant agreements 2015-02760, 2016-01153, and 2016-01154)N

    Functional and in silico assessment of MAX variants of unknown significance

    No full text
    The presence of germline mutations affecting the MYC-associated protein X (MAX) gene has recently been identified as one of the now 11 major genetic predisposition factors for the development of hereditary pheochromocytoma and/or paraganglioma. Little is known regarding how missense variants of unknown significance (VUS) in MAX affect its pivotal role in the regulation of the MYC/MAX/MXD axis. In the present study, we propose a consensus computational prediction based on five "state-of-the-art" algorithms. We also describe a PC12-based functional assay to assess the effects that 12 MAX VUS may have on MYC's E-box transcriptional activation. For all but two of these 12 VUS, the functional assay and the consensus computational prediction gave consistent results; we classified seven variants as pathogenic and three as nonpathogenic. The introduction of wild-type MAX cDNA into PC12 cells significantly decreased MYC's ability to bind to canonical E-boxes, while pathogenic MAX proteins were not able to fully repress MYC activity. Further clinical and molecular evaluation of variant carriers corroborated the results obtained with our functional assessment. In the absence of clear heritability, clinical information, and molecular data, consensus computational predictions and functional models are able to correctly classify VUS affecting MAX. KEY MESSAGES: A functional assay assesses the effects of MAX VUS over MYC transcriptional activity. A consensus computational prediction and the functional assay show high concordance. Variant carriers' clinical and molecular data support the functional assessment

    Concomitant Medications and Risk of Chemotherapy-Induced Peripheral Neuropathy

    No full text
    Background. Peripheral neuropathy is the dose-limiting toxicity of many oncology drugs, including paclitaxel. There is large interindividual variability in the neuropathy, and several risk factors have been proposed; however, many have not been replicated. Here we present a comprehensive study aimed at identifying treatment and physiopathology-related paclitaxel-induced neuropathy risk factors in a large cohort of well-characterized patients. Patients and Methods. Analyses included 503 patients with breast or ovarian cancer who received paclitaxel treatment. Paclitaxel dose modifications caused by the neuropathy were extracted from medical records and patients self-reported neuropathy symptoms were collected. Multivariate logistic regression analyses were performed to identify concomitant medications and comorbidities associated with paclitaxel-induced neuropathy. Results. Older patients had higher neuropathy: for each increase of 1 year of age, the risk of dose modifications and grade 3 neuropathy increased 4% and 5%, respectively. Cardiovascular drugs increased the risk of paclitaxel dose reductions (odds ratio [OR], 2.51; p = .006), with a stronger association for beta-adrenergic antagonists. The total number of concomitant medications also showed an association with dose modifications (OR, 1.25; p = .012 for each concomitant drug increase). A dose modification predictive model that included the new identified factors gave an area under the curve of 0.74 (p = 1.07 × 10−10). Preexisting nerve compression syndromes seemed to increase neuropathy risk. Conclusion. Baseline characteristics of the patients, including age and concomitant medications, could be used to identify individuals at high risk of neuropathy, personalizing chemotherapy treatment and reducing the risk of severe neuropathy.Depto. de EnfermeríaFac. de Enfermería, Fisioterapia y PodologíaTRUEpu
    corecore