19 research outputs found

    Influence of periodontal disease, porphyromonas gingivalisand cigarette smoking on systemic anti-citrullinated peptide antibody titres

    No full text
    <p>Background: Anti-citrullinated protein antibody (ACPA) responses may precede clinical onset of rheumatoid arthritis. Porphyromonas gingivalispeptidylarginine deiminase can citrullinate proteins possibly inducing autoimmunity in susceptible individuals.</p> <p>Aim: To determine whether periodontitis, carriage of P. gingivalis, smoking and periodontal therapy influence ACPA titres.</p> <p>Methods: Serum and plaque samples were collected from 39 periodontitis patients before and after non-surgical periodontal treatment, and from 36 healthy subjects. Carriage of P. gingivalis was determined by PCR of plaque DNA. ACPA was determined by anti-cyclic citrullinated peptide (CCP) enzyme-linked immunosorbent assay (ELISA). Anti-P. gingivalis titres were determined by ELISA.</p> <p>Results: Untreated periodontitis patients had higher anti-CCP antibody titres than healthy controls [three patients (8%) greater than manufacturer suggested assay diagnostic threshold (5 Assay Units/AU) versus none (0%); mean ± SEM: 1.37 ± 0.23 versus 0.40 ± 0.10 AU, p < 0.0001]. Periodontitis patients who smoked demonstrated lower anti-P. gingivalis (15956 ± 4385 versus 2512 ± 1290 Units/ml, p < 0.05), but similar anti-CCP than non-smoking periodontitis patients (smokers: 1.31 ± 0.35; non-smokers: 1.41 ± 0.32 AU). Healthy smokers demonstrated elevated anti-CCP titres (0.75 ± 0.19 AU), at levels between healthy non-smokers (0.15 ± 0.05 AU) and non-smoker periodontitis patients. Six months after periodontal treatment, there were significant reductions in anti-CCP (non-smokers p < 0.05) and anti-P. gingivalis (all participants p < 0.01).</p> <p>Conclusion: In subjects with periodontitis, P. gingivalis infection may be responsible for inducing autoimmune responses that characterize rheumatoid arthritis.</p&gt

    C3-targeted therapy in periodontal disease: moving closer to the clinic

    No full text
    Complement plays a key role in immunosurveillance and homeostasis. When dysregulated or overactivated, complement can become a pathological effector, as seen in several inflammatory disorders, including periodontal disease. Recently, clinical correlative studies and preclinical mechanistic investigations have collectively demonstrated that complement is hyperactivated during periodontitis and that targeting its central component (C3) provides therapeutic benefit in nonhuman primates (NHPs). The preclinical efficacy of a C3-targeted drug candidate combined with excellent safety and pharmacokinetic profiles supported its use in a recent Phase IIa clinical study in which C3 inhibition resolved gingival inflammation in patients with periodontal disease. We posit that C3-targeted intervention might represent a novel and transformative host-modulation therapy meriting further investigation in Phase III clinical trials for the treatment of periodontitis
    corecore