157 research outputs found

    Validation of an automated assay for the measurement of cupric reducing antioxidant capacity in serum of dogs

    Get PDF
    BACKGROUND: The objective of the present study was to optimize and validate an automated method to assess the total antioxidant capacity (TAC) in serum of dogs using the cupric reducing antioxidant capacity (CUPRAC) methodology (TAC(c)) with bathocuproinedisulfonic acid disodium salt as chelating agent, evaluating also possible variations due to the use of two different automated analyzers. The method is based on the reduction of Cu(2+) into Cu(1+) by the action of the non-enzymatic antioxidants that are present in the sample. RESULTS: Imprecision was low in both apparatus utilized, and the results were linear across serial Trolox and canine serum samples dilutions. Lipids did not interfere with the assay; however, hemolysis increased the TAC(c) concentrations. When TAC(c) concentrations were determined in ten healthy (control) dogs and in twelve dogs with inflammatory bowel disease (IBD), dogs with IBD had lower TAC(c) concentrations when compared with the healthy dogs. CONCLUSIONS: The method validated in this paper is precise, simple, and fast and can be easily adapted to automated analyzers

    Synthesis of new triazolyl-N,N-dialkyldithiocarbamates as antifungal agents

    No full text
    N,N-Dialkylditihiocarbamate derivatives have been well known as broad-range fungicides. In this study, the triazole derivatives of ten new N,N-disubstituted dithiocarbamates (3a-j) were synthesized and their structures were identified by spectral and elemental analysis. Results of the antifungal activity studies showed that some of the compounds tested were active against M. canis, M. gypseum, and T rubrum at the concentration of 12.5 mu g/mL when clotrimazol was used as a standard

    CADASIL syndrome in a large Turkish kindred caused by the R90C mutation in the Notch3 receptor

    No full text
    Mutations in the Notch3 gene are the cause of the autosomal dominant disorder CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). The CADASIL is an adult-onset neurologic disorder (average age of onset is 45 years) characterized by recurrent strokes and dementia. Clinical features combined with cerebral magnetic resonance imaging (MRI), showing a diffuse leukoencephalopathy with subcortical infarcts in the basal ganglia and white matter, are highly contributive to the diagnosis. We present a Turkish family with CADASIL, in which 12 individuals in four generations were affected showing the typical clinical features of recurrent strokes. Mutation analysis of the Notch3 receptor gene identified the recently described R90C mutation in the N-terminal part of the gene in affected individuals. Interestingly, migraine without aura was found as an initial symptom of the disease in two young mutation carriers (22 and 25 years, respectively), who did not show any additional clinical features or any MRI abnormalities. This indicates that migraine without aura in the absence of MRI abnormalities may represent an early initial symptom of CADASIL, which is difficult to diagnose in the absence of molecular diagnosis. Therefore, the used molecular screening method for Notch3 mutations provides a rapid and accurate diagnostic tool in addition to the standard diagnostic procedures

    Glycine to tryptophan substitution in type I collagen in a patient with OI type III: a unique collagen mutation

    Get PDF
    We report a unique glycine substitution in type I collagen and highlight the clinical and biochemical consequences. The proband is a 9 year old Turkish boy with severely deforming osteogenesis imperfecta (OI). Biochemical analysis of (pro) collagen type I from a skin fibroblast culture showed both normal and overmodified α chains. Molecular analysis showed a G>T transversion in the COL1A2 gene, resulting in the substitution of glycine by tryptophan at position 277 of the α2(I) collagen chain. Glycine substitutions in type I collagen are the most frequent cause of the severe and lethal forms of OI. The phenotypic severity varies according to the nature and localisation of the mutation. Substitutions of glycine by tryptophan, which is the most voluminous amino acid, have not yet been identified in type I collagen or any other fibrillar collagen. The severe, though non-lethal OI phenotype associated with this mutation may appear surprising in view of the huge size of the tryptophan residue. The fact that the mutation resides within a so called "non-lethal" region of the α2(I) collagen chain supports a regional model in phenotypic severity for α2(I) collagen mutations, in which the phenotype is determined primarily by the nature of the collagen domain rather than the type of glycine substitution involved.


Keywords: osteogenesis imperfecta; COL1A2; tryptophan; collage

    A new locus for autosomal recessive non-syndromic mental retardation maps to 1p21.1-p13.3.

    No full text
    Autosomal recessive inheritance of non-syndromic mental retardation (ARNSMR) may account for approximately 25% of all patients with non-specific mental retardation (NSMR). Although many X-linked genes have been identified as a cause of NSMR, only three autosomal genes are known to cause ARNSMR. We present here a large consanguineous Turkish family with four mentally retarded individuals from different branches of the family. Clinical tests showed cognitive impairment but no neurological, skeletal, and biochemical involvements. Genome-wide mapping using Human Mapping 10K Array showed a single positive locus with a parametric LOD score of 4.92 in a region on chromosome 1p21.1-p13.3. Further analyses using polymorphic microsatellite markers defined a 6.6-Mb critical region containing approximately 130 known genes. This locus is the fourth one linked to ARNSMR
    corecore