549 research outputs found
Systems thinking for the transition to zero pollution
Systems approaches are vital for coordinating decision-making in the face of complex issues because they provide the whole picture view needed to avoid negative unintended consequences and to generate genuine benefits. This paper explains how systems thinking can be used to address environmental pollution and support decision-makers in finding solutions
The AWAKE Run 2 Programme and beyond
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.info:eu-repo/semantics/publishedVersio
Phenomenological description of the gamma* p cross section at low Q2
Low Q2 photon-proton cross sections are analysed using a simple,
QCD-motivated parametrisation ,
which gives a good description of the data. The Q2 dependence of the gamma* p
cross section is discussed in terms of the partonic transverse momenta of the
hadronic state the photon fluctuates into.Comment: 14 pages, revtex, epsfig, 2 figure
Soft Contributions to Hard Pion Photoproduction
Hard, or high transverse momentum, pion photoproduction can be a tool for
probing the parton structure of the beam and target. We estimate the soft
contributions to this process, with an eye toward delineating the region where
perturbatively calculable processes dominate. Our soft process estimate is
based on vector meson dominance and data based parameterizations of
semiexclusive hadronic cross sections. We find that soft processes dominate in
single pion photoproduction somewhat past 2 GeV transverse momentum at a few
times 10 GeV incoming energy. The recent polarization asymmetry data is
consistent with the perturbative asymmetry being diluted by polarization
insensitive soft processes. Determining the polarized gluon distribution using
hard pion photoproduction appears feasible with a few hundred GeV incoming
energy (in the target rest frame).Comment: 6 pages, 5 figure
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Controlled growth of the self-modulation of a relativistic proton bunch in plasma
A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self-modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.info:eu-repo/semantics/publishedVersio
Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants
Measurement of the Spin Asymmetry in the Photoproduction of Pairs of High-pT Hadrons at HERMES
We present a measurement of the longitudinal spin asymmetry A_|| in
photoproduction of pairs of hadrons with high transverse momentum p_T. Data
were accumulated by the HERMES experiment using a 27.5 GeV polarized positron
beam and a polarized hydrogen target internal to the HERA storage ring. For
h+h- pairs with p_T^h_1 > 1.5 GeV/c and p_T^h_2 > 1.0 GeV/c, the measured
asymmetry is A_|| = -0.28 +/- 0.12 (stat.) +/- 0.02 (syst.). This negative
value is in contrast to the positive asymmetries typically measured in deep
inelastic scattering from protons, and is interpreted to arise from a positive
gluon polarization.Comment: 5 pages (latex), 4 figures (eps
- …