1,503 research outputs found

    Effective Hamiltonian for Photonic Topological Insulator with Non-Hermitian Domain Walls

    Get PDF
    The gain and loss in photonic lattices provide possibilities for many functional phenomena. In this Letter, we consider photonic topological insulators with different types of gain-loss domain walls, which will break the translational symmetry of the lattices. A method is proposed to construct effective Hamiltonians, which accurately describe states and the corresponding energies at the domain walls for different types of photonic topological insulators and domain walls with arbitrary shapes. We also consider domain-induced higher-order topological states in two-dimensional non-Hermitian Aubry-André-Harper lattices and use our method to explain such phenomena successfully. Our results reveal the physics in photonic topological insulators with gain-loss domain walls, which provides advanced pathways for manipulation of non-Hermitian topological states in photonic systems

    The Predictive Value of Coronary Microvascular Dysfunction For Left Ventricular Reverse Remodelling in Dilated Cardiomyopathy

    Get PDF
    AIMS: to evaluate the degree of coronary microvascular dysfunction (CMD) in dilated cardiomyopathy (DCM) patients by cardiac magnetic resonance (CMR) first-pass perfusion parameters and to examine the correlation between myocardial perfusion and left ventricle reverse remodelling (LVRR). METHODS: In this study, 94 DCM patients and 35 healthy controls matched for age and sex were included. Myocardial perfusion parameters, including upslope, time to maximum signal intensity (Time RESULTS: With a median follow-up period of 12 months [interquartile range (IQR), 8-13], 41 DCM patients (44%) achieved LVRR. Compared with healthy controls, DCM patients presented CMD with reduced upslope, SI CONCLUSIONS: CMD could be found in DCM patients and was more impaired in patients with non-LVRR than LVRR patients. Tim

    Bovine PrPC directly interacts with αB-crystalline

    Get PDF
    AbstractWe used a bovine brain cDNA library to perform a yeast two-hybrid assay with bovine mature PrPC as bait. The screening result showed that αB-crystalline interacted with PrPC. The interaction was further evaluated both in vivo and in vitro with different methods, such as immunofluorescent colocalization, native polyacrylamide-gel electrophoresis, and IAsys biosensor assays. The results suggested that αB-crystalline may have the ability to refold denatured prion proteins, and provided first evidence that αB-crystalline is directly associated with prion protein

    The Use of Cardiac Magnetic Resonance in Hypertrophic Cardiomyopathy Over the Past 10 Years [2013-2023]: a Citespace-Based Bibliometric analysis

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common genetic cardiac disorder characterized by the hypertrophy of a segment of the myocardium. Cardiac magnetic resonance (CMR) has been widely used in the assessment of HCM. However, no bibliometric assessment has been conducted on the progress of research in this field. This study thus aimed to examine the current state of research into the application of CMR in HCM and the hotspots and trends that have emerged in this field over the past decade. METHODS: A systematic search was conducted on the Web of Science regarding CMR in the assessment of HCM. The databases were searched from 2013 to June 2023. CiteSpace is an application that can be used to characterize the underlying knowledge of the scientific literature in a given field. We used it to analyze the relationship between publication year and country, institution, journal, author, bibliography, and keywords in the field of CMR for the assessment of HCM. RESULTS: A total of 1,427 articles were included in the analysis. In the assessment of HCM, the findings from the past decade have consistently demonstrated a progressive rise in the quantity of articles pertaining to CMR. The country with the largest number of publications was the United States [310], and the institution with the greatest number of publications was the University College London [45]. The analysis of keywords revealed the diagnosis and management of HCM with CMR to be the current research focus and emerging trend within this academic field. CONCLUSIONS: This study used a novel approach to visually analyze the use of CMR in HCM assessment. The current research trajectory in CMR consists of the diagnosis and management of patients with HCM. Although most studies confirmed the indispensability of CMR in the assessment of HCM, larger-scale cohorts are still needed to more comprehensively evaluate the role of CMR in the differential diagnosis, pre- and post-treatment assessment, and long-term management of patients with HCM

    A fluorinated bihydrazide conjugate for activatable sensing and imaging of hypochlorous acid by 19F NMR/MRI.

    Get PDF
    Hypochlorous acid (HClO) is one of the most important reactive oxygen species (ROS) and plays a vital role in many physiological and pathological processes. The comprehensive exploration of mechanistic details and the potential clinical translation necessitate the development of reliable probes for prompt and accurate detection of HClO in complex biological environments. Herein we report a fluorinated bihydrazide conjugate as a 19F NMR/MRI probe with a "turn-on" character for the detection of HClO. This probe could selectively respond to HClO, leading to a significant recovery of 19F signals for 19F NMR/MRI. Activatable sensing and imaging of HClO were achieved with SMMC-7721 cells and nude mice, which demonstrates that this small molecular conjugate could serve as a selective probe for real-time sensing and imaging of HClO in biological systems

    Film-GAN: towards realistic analog film photo generation

    Get PDF
    In recent years, the art of film photography has reemerged as a topic of interest for both researchers and the community. Unlike digital photography, which relies on pixels to capture and store information, film photography employs silver halide to capture the scene. This process imbues film photos with a unique colour and textured graininess not present in digital photography. In this paper, we propose Film-GAN, the first Generative Adversarial Network (GAN)-based method for translating digital images to film. Film-GAN generates a corresponding film transformation of the input image based on the desired reference film style. To improve the realism of the generated images, we introduce the colour-noise-encoding (CNE) network, which extracts the colour and graininess of the reference image separately. Our experimental simulations demonstrate that Film-GAN outperforms other state-of-the-art approaches on multiple datasets. Based on evaluations from both professional photographers and amateur photography enthusiasts, the images generated by Film-GAN also received a higher number of votes, indicating its ability to produce better film-effect images

    The predictive value of coronary microvascular dysfunction for left ventricular reverse remodelling in dilated cardiomyopathy

    Get PDF
    AimsTo evaluate the degree of coronary microvascular dysfunction (CMD) in dilated cardiomyopathy (DCM) patients by cardiac magnetic resonance (CMR) first-pass perfusion parameters and to examine the correlation between myocardial perfusion and left ventricle reverse remodelling (LVRR).MethodsIn this study, 94 DCM patients and 35 healthy controls matched for age and sex were included. Myocardial perfusion parameters, including upslope, time to maximum signal intensity (Timemax), maximum signal intensity (SImax), baseline signal intensity (SIbaseline), and the difference between maximum and baseline signal intensity (SImax−baseline) were measured. Additionally, left ventricular (LV) structure, function parameters, and late gadolinium enhancement (LGE) were also recorded. The parameters were compared between healthy controls and DCM patients. Univariable and multivariable logistic regression analyses were used to determine the predictors of LVRR.ResultsWith a median follow-up period of 12 months [interquartile range (IQR), 8–13], 41 DCM patients (44%) achieved LVRR. Compared with healthy controls, DCM patients presented CMD with reduced upslope, SIbaseline, and increased Timemax (all p < 0.01). Timemax, SImax, and SImax−baseline were further decreased in LVRR than non-LVRR group (Timemax: 60.35 [IQR, 51.46–74.71] vs. 72.41 [IQR, 59.68–97.70], p = 0.017; SImax: 723.52 [IQR, 209.76–909.27] vs. 810.92 [IQR, 581.30–996.89], p = 0.049; SImax−baseline: 462.99 [IQR, 152.25–580.43] vs. 551.13 [IQR, 402.57–675.36], p = 0.038). In the analysis of multivariate logistic regression, Timemax [odds ratio (OR) 0.98; 95% confidence interval (CI) 0.95–1.00; p = 0.032)], heart rate (OR 1.04; 95% CI 1.01–1.08; p = 0.029), LV remodelling index (OR 1.73; 95% CI 1.06–3.00; p = 0.038) and LGE extent (OR 0.85; 95% CI 0.73–0.96; p = 0.021) were independent predictors of LVRR.ConclusionsCMD could be found in DCM patients and was more impaired in patients with non-LVRR than LVRR patients. Timemax at baseline was an independent predictor of LVRR in DCM

    xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the Language of Protein

    Full text link
    Protein language models have shown remarkable success in learning biological information from protein sequences. However, most existing models are limited by either autoencoding or autoregressive pre-training objectives, which makes them struggle to handle protein understanding and generation tasks concurrently. We propose a unified protein language model, xTrimoPGLM, to address these two types of tasks simultaneously through an innovative pre-training framework. Our key technical contribution is an exploration of the compatibility and the potential for joint optimization of the two types of objectives, which has led to a strategy for training xTrimoPGLM at an unprecedented scale of 100 billion parameters and 1 trillion training tokens. Our extensive experiments reveal that 1) xTrimoPGLM significantly outperforms other advanced baselines in 18 protein understanding benchmarks across four categories. The model also facilitates an atomic-resolution view of protein structures, leading to an advanced 3D structural prediction model that surpasses existing language model-based tools. 2) xTrimoPGLM not only can generate de novo protein sequences following the principles of natural ones, but also can perform programmable generation after supervised fine-tuning (SFT) on curated sequences. These results highlight the substantial capability and versatility of xTrimoPGLM in understanding and generating protein sequences, contributing to the evolving landscape of foundation models in protein science

    Time-Efficient Cloning Attacks Identification in Large-Scale RFID Systems

    Get PDF
    Radio Frequency Identification (RFID) is an emerging technology for electronic labeling of objects for the purpose of automatically identifying, categorizing, locating, and tracking the objects. But in their current form RFID systems are susceptible to cloning attacks that seriously threaten RFID applications but are hard to prevent. Existing protocols aimed at detecting whether there are cloning attacks in single-reader RFID systems. In this paper, we investigate the cloning attacks identification in the multireader scenario and first propose a time-efficient protocol, called the time-efficient Cloning Attacks Identification Protocol (CAIP) to identify all cloned tags in multireaders RFID systems. We evaluate the performance of CAIP through extensive simulations. The results show that CAIP can identify all the cloned tags in large-scale RFID systems fairly fast with required accuracy
    • …
    corecore