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Abstract
In recent years, the art of film photography has reemerged as a topic of interest for both researchers and the community.

Unlike digital photography, which relies on pixels to capture and store information, film photography employs silver halide

to capture the scene. This process imbues film photos with a unique colour and textured graininess not present in digital

photography. In this paper, we propose Film-GAN, the first Generative Adversarial Network (GAN)-based method for

translating digital images to film. Film-GAN generates a corresponding film transformation of the input image based on the

desired reference film style. To improve the realism of the generated images, we introduce the colour-noise-encoding

(CNE) network, which extracts the colour and graininess of the reference image separately. Our experimental simulations

demonstrate that Film-GAN outperforms other state-of-the-art approaches on multiple datasets. Based on evaluations from

both professional photographers and amateur photography enthusiasts, the images generated by Film-GAN also received a

higher number of votes, indicating its ability to produce better film-effect images.

Keywords GAN � Photo generation � Generative network � Image translation

1 Introduction

Film photography has a storied history spanning over a

century. However, in the twenty-first century, digital pho-

tography has emerged as the dominant medium due to its

substantial advancements in digital sensors and streamlined

photo development processes. Despite these benefits, some

of the most respected photographers maintain that film

remains the superior form of photography. Film is an

imaging equipment coated with silver halide and is typi-

cally loaded into a film camera. The film captures light as it

passes through the lens, causing silver ions to be exposed

and cured on the film base. Its photosensitive scale operates

at the atomic level, resulting in more comprehensive

information being recorded than digital photos of equiva-

lent size. Furthermore, film produces a richer and more

delicate visual perception. The resurgence of interest in

film colour and photos has been observed among both the

general community and researchers, particularly among the

new generation on social media platforms. Despite the

limited availability of film cameras and the complexity of

film development, some individuals seek to learn the art of

film photography, while others utilize mobile applications

(APPs) to simulate a film-like effect on digital photos.

These APPs that simulate film-like effects typically convert

digital photos by linearly adjusting the colour filter.

However, this approach often results in the loss of image

details and fails to replicate the true characteristics of film

photography. Recent advancements in style domain trans-

lation and image-to-image translation have made signifi-

cant progress, particularly with the use of deep learning
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models that can extract different domain features for

translation. For example, models based on Generative

Adversarial Network (GAN) [1] can utilize both paired and

unpaired images. In this paper, we propose a GAN-based

model that can generate realistic film photos from digital

images.

Prior image-to-image techniques have achieved

tremendous success in various domains. Nevertheless,

several obstacles remain to be overcome for the digital-to-

film translation task. Firstly, one of the primary distinctions

between film and digital photography lies in colour,

encompassing factors such as hue and colour temperature.

In regular circumstances, digital photographs strive to

reproduce the colours of the actual scene, whereas devel-

oped film imparts a different colouration to the scene based

on its style. For instance, photos taken using Kodak Gold

200 typically exhibit an overall yellowish hue. Therefore,

accurately converting the colour feature of digital photos to

the effect of film has certain difficulties. Secondly, digital

photos consist of small units of pixels, and the noise is

generated by the thermal motion of molecules. In contrast,

film is composed of silver salt grains, and its graininess is a

by-product of poor photographic quality. Additionally, the

random noise produced by digital sensors blurs the entire

image. Conversely, the silver halide grains produced by

film are naturally arranged based on the light exposure,

resulting in a more textured, sharper, and visually stylish

image. Such film grain pattern is not randomly generated

and it is hard to approximate without prior knowledge (see

Fig. 1). Thirdly, there exist multiple types of films in the

market, each possessing unique characteristics. The digital-

to-film translation task involves a one-to-multiple domain

conversion, transforming digital photos into various film

effects. Consequently, addressing these challenges cannot

be achieved solely by transferring prior approaches [2–5]

on this task.

To address the aforementioned challenges, we propose

the Film-GAN, which is the first approach to use Genera-

tive Adversarial Networks (GANs) to solve the digital-to-

film translation task. Given that colour and graininess are

the main differences between the two domains, we adapt

our model to generate realistic images based on these

aspects. Specifically, our approach introduces a colour-

noise-encoding (CNE) network that comprises a noise-

separation (NS) module, composed of a denoising module

and an extracting noise module, as well as two encoders,

namely, the colour encoder (CE) and the noise encoder

(NE), to compress the image and noise into feature vectors,

respectively. We then combine these with a source image

as input for a single GAN, which generates the film image.

Furthermore, our CE, NE, and discriminator units have

multi-layer outputs to accommodate the transformation of

the input to multiple film styles. During training, we only

provide film datasets, such as Kodak Gold 200, Kodak

Portra 160, and Ilford Hp5, and our model learns the

transitions between film styles, while the trained model can

be directly used for the digital-to-film conversion task.

The main contributions of this article are summarized as

follows:

• We introduce Film-GAN, the first GAN-based approach

for digital-to-film translation, which is capable of

converting digital images into three different film styles

as an example. To ensure the accuracy of feature

extraction and maintain an appropriate distance

between the GAN-generated image and the original
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Fig. 1 The source images, reference images, generated images with

film styles, including Kodak Gold 200, Kodak Portra 160 and Ilford

Hp5, and three detail images. The source images contain the photos

from the public dataset ImageNet and the photos we took with our

smartphone. The difference in graininess and colour between film and

digital images can be seen by comparing Detail of Real Film and

Detail of Digital Image. Our model produces the film very close to the

real film in colour and graininess, also guarantees the requirement of

generating various styles. Please check the details in 200% zoom



image, we incorporate style loss and reconstruction

loss. Our approach outperforms previous methods in

terms of generating more visually appealing film-like

images, as presented in Fig. 1.

• We propose the colour-noise-encoding (CNE) network,

which consists of the noise-separation (NS) module, the

colour encoder (CE), and the noise encoder (NE), to

segregate and extract content colour and grains sepa-

rately as multiple conditions for GAN. We pre-train the

NS module for noise reduction and then perform noise

separation on the film images to generate a noise map

and a denoised map for subsequent feature extraction

performed by CE and NE. Consequently, the CNE

network enhances the quality of the images generated

by GAN, and is better in impression.

2 Related work

Recently, a significant number of approaches are proposed

for image translation. The approaches can be divided into

deep learning-based approaches and GAN-based approa-

ches. For deep learning-based methods, some are trained to

learn specific styles from corresponding images. [2] intro-

duce a neural algorithm of artistic style that can combine

content and appearance of artworks to achieve image-to-

image style transfer, and is the first to propose a Gram

matrix for style representation. [3] propose a new loss

calculation method for image style translation named per-

ceptual loss. Instead of utilizing the per-pixel loss between

the output and the reference image, it calculates the dis-

tance between the two in the feature domain. After the

above methods are proposed, people realize the limitation

that they can only generate fixed styles, so new approaches

are developed to transfer arbitrary styles. [6] firstly present

adaptive instance normalization (AdaIN) layer to combine

content and arbitrary styles by transferring feature statis-

tics. [7] take a pair of transforms, i.e., whitening and

colouring, to the image reconstruction network for

matching the content to target style. At the same time, a

series of methods based on Generative Adversarial Net-

works [1] are proposed to generate arbitrary style images.

[8] innovatively use conditional GAN [9] to complete the

framework of image translation. [4] present CycleGAN

using unpaired data to complete image style translation.

[10] introduce a mask module to the adversarial network

structure to spatially determine the stylization level for

output. [11] propose a style-aware loss trained with a

generator network, which better captures the style affects

content. In addition, many other GAN-based approaches

are proposed, such as UNIT [12], DualGAN [13] and

DiscoGAN [14], that can generate arbitrary styles, i.e., one-

to-one style translation. [15] use a multilayer and patch-

based approach to conduct one-sided translation in the

unpaired image translation. [16] introduce the attention

mechanism to GAN, the generator can produce an attention

mask to obtain high-quality translation results. [17] intro-

duces FreezeSG and structure loss based on fine-tuning

styleGAN v2, maintaining the structure between the source

image and target image. [18] extend the latent space of

StyleGAN with additional content features by developing a

two-branch model. [19] enhance the handling of perform

geometry changes and remove large objects scenarios with

CAGAN. [20] use image translation to solve the problem

of image culturalization. [21] propose a dual perceptual

loss based on the complementarity between VGG and

ResNet features to improve the effect of image recon-

struction. [22] propose VecGAN for image translation by

employing latent space decomposition to design learnable

attribute editing. Other approaches focus on multi-modal

image style translation. [23] propose a framework named

MUNIT, which assumes that image features can be

decomposed into content and style codes, to be reassem-

bled after dismantling. [24] propose StarGAN, a novel and

scalable approach that achieves multi-domain conversion

by encoding the reference image and training multi-domain

dataset at the same time, and further propose StarGAN v2

[5] that add encoder and mapping network for better han-

dling of reference style features and latent code. [25]

propose a new multi-domain image translation method by

generating a new model in the target domain for the cor-

responding conversion. Then, many studies on the appli-

cation of GAN-based image translation appeared. In order

to handle geometric translation, [26] develop ObjectVar-

iedGAN to learn the shapes mapping between source and

target domains specifically. [27] propose SelectionGAN

guide image-to-image translation by combining conditional

semantics, multi-scale spatial pooling and multi-channel

attention. [28] provide OutfitGAN, which uses the collo-

cation classification module (CCM) to translate one extant

fashion item to an entire outfit according to the mapping

relationship identified by the semantic alignment module

(SAM). [29] enhance the underwater images using a multi-

stage generator network inspired by CycleGAN. [30]

devise a cascade dense-channel attention (CDCA) module

to adaptively distinguish noise feature and combine it with

GAN structure, called UAGAN. Some other methods are

introduced for multi-modal image style translation [31–35].

In the field of medical image processing, there are several

GAN-based models proposed for image translation [35–37]

(Figs. 2, 3).

Although these methods are very successful, most of

them are one-to-one domain translations, while multi-

modal translations are mostly for portraits or colour pre-

diction, which are not suitable for multi-modal-digital-film



matrix for a style. In the training phase, source image xs
and reference image xr are both divided into the n cate-

gories each representing a film style, and Film-GAN learns

a mapping Uf : Fs ! Fr. In the application stage, the

source images are replaced by digital photos which every

photo has a style p 2 P to achieve a transferring from film-

film mapping Uf to digital-to-film mapping Ud : P ! Fr.

3.2 Colour-noise-encoding network

3.2.1 Noise-separation module

The reference film image xr is one of the important con-

ditions for the generator G to produce an image. At first, we

try to perform the feature extraction according to the

original reference image by only an encoder; however, G

generates a poor graininess effect. This shows that a single

encoder cannot extract the features of the grains very well.

Second, we add a pre-trained model for noise reduction,

and in order to facilitate the simultaneous generation of

noisy images, we assume that the grains in the film can be

approximated by additive noise. Although grain is a by-

G together with the source image to generate the film style we

expected. During the training process, discriminator D accepts the

result of G and the source image and then distinguishes their real-fake

case and the style they belong to

Fig. 2 The overall architecture of Film-GAN. It takes the reference 
image into the Mdn and the Men to extract colour and noise features, 
respectively. The results are compressed by the Ei and the En into 
feature vectors, which are finally used as inputs of the generator

style translation task that needs to focus on distinctive 
colour and textured graininess.

3 Method

3.1 Overview

We take P and F to represent the digital photo domain and 
film photo domain. We take F ¼ F1; F2; � � � ; Fnf g, which 
contains n film styles. Film-GAN has two inputs, where the 
source image xs is the object we want to transform and the 
reference image xr is an example of the target film style. 
They have a style f 2 F and a style f~ 2 F, respectively. 
After processing by NS module Mns, reference image xr is 
separated into denoised images and noise images, where 
the noise is actually the grains in film. The generator G 
receives the vectors compressed by colour encoder Ei and 
noise encoder En translates source image to target style. 
Inspired by StarGAN [5, 24], the discriminator D deter-
mines the image generated by G, and outputs n-dimen-

sional results, each of which corresponds to a discriminant



product of the photo reaction of film, which is generated in

a different way from digital noise, it can be regarded as

digital noise when viewed and processed with an electronic

device. Based on the above assumption, we can use the

properties of additive noise to calculate the noise image

based on the reference film image and the clean image.

However, since the denoising model cannot restore a per-

fectly clean image, its deviation will further lead to the

inaccuracy of the noise image, so its performance is still

not good. Therefore, we finally introduce two modules:

denoising module Mdn and extracting noise module Men to

compose the noise-separation (NS) module Mns together.

The objective they are hoped to achieve is

xr ¼ Mdn xrð Þ þMen xrð Þ, We employ combinatorial train-

ing to jointly train two models and present a loss function

to link them. Their loss functions are introduced in Sect.

3.3.

Denoising module. This part mainly focuses on restoring

the input reference image to a clean image, that is, noise

reduction. According to the practice of MWCNN [38], we

develop Mdn by replacing the up and down sampling in U-

Net [39] with discrete wavelet transform (DWT) and

inverse wavelet transform (IWT) [40, 41]. It contains a

five-layer encoder and a five-layer decoder, and finally

obtains the output clean image through a fully connected

layer. Each layer has a skip connection from the encoder to

the decoder. In pre-training process, it accepts a noisy

image In and outputs a denoised image Ic of the same size,

that is Ic ¼ Mdn Inð Þ. In addition, we hope this module does

not over-perform, because the side effect of excessive

denoising capability will distort the values of some irrele-

vant pixels, the colour characteristics of the film itself will

be changed and blurred, which makes it difficult for the

encoder to extract features. And, this problem is well

solved by the combinatorial training mentioned above.

Extracting noise module. This part mainly focuses on

generating the noise image based on the input reference

image. Inspired by DnCNN [42], we introduce Men that use

OursSource Image

(b) (c) (i)(d) (e) (f) (g) (h)(a)

Gatys Fast NST CycleGAN StarGAN v2MUNIT SAVI2I DiffusionIT

Fig. 3 Performance comparison with various models. a Input source images. b Results of Film-GAN. c-i Results of Gatys et al., Fast NST,

CycleGAN, MUNIT, StarGAN v2, SAVI2I and DiffuseIT, respectively



residual learning to extract the noise. There are twelve

layers of the convolutional network, in which the first layer

structure is a convolution operation and ReLU function, the

last layer structure has only one convolution operation, and

the middle part is the 10-layer structure of [Convolution,

Batch Norm and ReLU function]. Finally, in pre-training

process, it transforms noisy image In to its noise image ~In,

that is, ~In ¼ Men Inð Þ. Moreover, the model needs noisy and

noise image pairs for training. Since there is no corre-

sponding noise image in the SSID dataset, our combina-

torial loss function avoids using the noise image directly.

3.2.2 Colour encoder and noise encoder

Since we process clean images and noisy images sepa-

rately, we introduce two encoders to process these two

features. They share the same standard encoder structure. It

contains eight layers. The first layer is a convolution that

increases the channel of input. The subsequent six-layer

network is a combination of convolution operation and

pooling operation, and they extract feature information

from the image step by step. In the final part of the model,

there are n groups of unshared fully connected layers. Each

group corresponds to a 64-dimensional vector output, so

the encoder has n outputs, where n is the number of styles

included in the film dataset. In addition to the clean or

noise image, the encoder also accepts another integer

parameter ni 2 f0; 1; . . .; ng that represents the style to

which the current image belongs. The encoder selects the

corresponding unshared layer as the final output according

to ni. As the final components of the CNE network, the

outputs of the colour encoder and the noise encoder will be

received by G as the generated reference in the next step.

3.3 Pre-training and training loss

In the pre-training stage, we train the NS module on the

SSID noise dataset [43], including denoising module Mdn

and extracting noise module Men. For the training data

Iin; I
i
c

� �N

i¼1
, the loss functions for Mdn is defined as follows:

Ldn Mdnð Þ ¼ EIinIic Mdn Iin
� �

� Iic
�� ��

1

h i
; ð1Þ

LcomMdn;Menð Þ ¼ EIin;Iic
Mdn Iin

� �

þMen Iin
� �

� Iin

�����

�����
1

" #

; ð2Þ

where extracting noise module Men outputs a noise image

Men Iin
� �

over the input Iin. Based on the property of additive

noise, the summation of clean image Mdn Iin
� �

and noise

image Men Iin
� �

is specified to be equal to the input Iin. It not

only avoids using noise image directly, but also strengthens

the connection between outputs generated by Mdn and Men.

Combining the above two loss functions, the overall loss of

the NS module is as follows:

LNS Mdn;Menð Þ ¼ kdnLdn Mdnð Þ
þ kcomLcom Mdn;Menð Þ;

ð3Þ

where kdn and kcom are the parameters that control the

importance of these two terms. In the main training stage,

we take a source image xs with a style f 2 F, a reference

image xr with a style ~f 2 F. After being processed by the

trained NS module, the reference image’s clean map

Mdn xrð Þ and noise map Men xrð Þ are generated. Then com-

pressed by the colour encoder Ei and noise encoder En, we

obtain colour vector ~c ¼ E
~f
i Mdn xrð Þð Þ and noise vector en ¼

E
~f
n Men xrð Þð Þ:Ef

i ð�Þ and Ef
nð�Þ transforms an image to vector

in corresponding style f. The generator G takes three

inputs, the source input image xs, colour vector ~c and noise

vector ~n represents colour and noise style it will be trans-

formed, tries to generate an image G xs; ~c; ~nð Þ. The real

image xs and generated image G xs; ~c; ~nð Þ are passed to the

discriminator D to distinguish. Df ð�Þ terms critical results

in corresponding style f. The first part is adversarial loss [1]

shown as follows,

LadvðD;GÞ ¼ Ef ;xs logDf xsð Þ
� �

þ E ~f ;xs;xr
log 1�D

~f G xs; ~c; ~nð Þð Þ
	 
h i

;
ð4Þ

where the discriminator D expects that it can accurately

distinguish between real images and generated images. In

the contrary, the generator G aims for its fake images to be

judged as real images. The second part is colour restoration

loss. In order to further strengthen the film effect of images

generated by G and the learning ability of the colour

encoder, we make the encoder extract the corresponding

colour vector from the image generated by G. It is defined

as follows:

Lcol G;Eið Þ

¼ E ~f ;xs;xr
~c� E

~f
i Mdn G xs; ~c; ~nð Þð Þð Þ

���
���
1

h i
;

ð5Þ

where re-extracted colour vector is obtained from noise

map of generated image G xs; ~c; ~nð Þ. It is expected that has

where denoising module Mdn processes Iin and outputs a 

clean image Mdn I
i
n

� �
. This loss function restricts the output 

Mdn I
i
n

� �
from deviating from the target clean image Iic

As mentioned above, since noise image is a missing 
component in the training set, we perform a training 
method as follows:



the minimum distance with the previous vectors ~c. In the

case of high accuracy of G, this object can also maintain

the stability of the encoder performance and prevent large

deviations from expectations.

The third part is noise restoration loss. Like the colour

restoration loss, it is similarly defined as follows,

Lnoi G;Enð Þ

¼ E ~f ;xs;xr
~n� E

~f
n Men G xs; ~c; ~nð Þð Þð Þ

���
���
1

h i
;

ð6Þ

where extracting noise module Men produces noise map of

generated image G xs; ~c; ~nð Þ, then noise encoder compresses

noise map to noise vector approximates the previous ~n.

The fourth part is cycle consistency loss [4]. It guaran-

tees the correlation and coherence of model output and

input, and avoids training with paired dataset. Such loss

function is defined as follows,

Lcyc G;Ei;Enð Þ

¼ E
f ;ef ;xs;xr

xs � G G xs; ~c; ~nð Þ; ĉ; n̂ð Þk k1
� �

;
ð7Þ

where the colour vector and noise vector representing

source style f is given by ĉ ¼ Ef
i Mdn xsð Þð Þ and

n̂ ¼ Ef
n Men xsð Þð Þ, respectively. The generator G loads them

and the generated fake image to the generator again, that is,

request G to try to restore the image to the original source

image style. Through comprehensive training generator, it

ensures that images can be converted between different

styles.

The final part is invariance loss. In a special case, the

source image and reference image received by generator

share the same style f ¼ ~f . To handle this situation,

invariance loss is defined as follows,

Lin G;Ei;Enð Þ ¼ Ef ;xs xs � G xs; ĉ; n̂ð Þk k1
� �

; ð8Þ

where the generator is expected to make zero change to the

source image. We simulate this situation by utilizing the

colour and noise vector generated from the source image

itself, that is ĉ and n̂. Combining Equation 4-8, the total

loss function for Film-GAN is defined as follows,

Ltotal D;G;Ei;Enð Þ ¼ Ladv þ kcolLcol þ knoiLnoi

þ kcycLcyc þ kinLin;
ð9Þ

where kcol; knoi; kcyc and kin are hyperparameters. During

the training process, the primary objective of the generator

G, colour encoder Ei and noise encoder En is to synthesize

highly realistic images that are indiscernible from real

images, thereby minimizing the loss function denoted as

Ltotal D;G;Ei;Enð Þ. Simultaneously, due to the character-

istics of adversarial learning, the primary goal of the dis-

criminator D is to effectively distinguish between real and

generated images, resulting in an increase in the loss

function value. Consequently, the generator and two

encoders try to minimize Ltotal D;G;Ei;Enð Þ, while the

discriminator strives to maximize it, they gradually reach

balance in the confrontation, and this process can be

expressed as follows,

min
G;Ei;En

max
D

Ltotal D;G;Ei;Enð Þ: ð10Þ

4 Experiment

In this section, we first introduce the dataset and training

details in Sects. 4.1 and 4.2. Then, we conduct an ablation

study to test the effect of the NS module in Sect. 4.3, and

several comparisons of other models and ours. All exper-

iments are implemented in the PyTorch environment run-

ning on Linux with NVIDIA GeForce RTX 2060 GPU.

Code for the models is available at https://github.com/

haoyGONG/FilmGAN.

4.1 Dataset

There are three datasets in this paper, in which Dpre is for

pre-training and Dtrain and Dtest are for training process. In

the pre-training process, dataset Dpre contains 2000 noisy-

clean image pairs sampled from the public dataset

Source Image Ours W/O CNE Module W/O NS Module

(a) (b) (c) (d)

Fig. 4 Ablation experiment on Film-GAN. a Input source images.

b Results of Film-GAN with complete CNE network. c Results of

Film-GAN without CNE network. d Results of Film-GAN without

NS module

https://github.com/haoyGONG/FilmGAN
https://github.com/haoyGONG/FilmGAN


the learning rate is set to 0.00001, and the learning rate

decreases linearly to 0 in the next 300 epochs.

4.3 Ablation experiment

We introduce a CNE network to assist GAN in better

generating target styles, as shown in Sect. 3.2, including a

pretrained NS module, colour encoder and noise encoder.

NS module is pretrained on dataset Dpre to learn to divide

film image into clean image and noise image. The colour

encoder and noise encoder are trained to find the feature

representations of clean images and noise images from the

NS module. These modules can enhance the model’s

ability to extract detailed features and encourage it to

restore colour and noise as equally important features.

Without this part, the model will automatically focus on the

colour feature, while ignoring the noise feature, and since

the grains in the film image also have a certain influence on

the colour distribution, the model cannot correctly extract

the colour feature. As shown in 3rd column of Fig. 4, if the

entire CNE network is removed, the model receives the

entire reference image without any target features, and the

generated images are indistinguishable. As shown in 4th

column of Fig. 4, if we eliminate the NS module, the

performance of the resulting images is unsatisfactory in

terms of colour and simulated graininess.

4.4 Comparison with the state-of-art method

We performed a comparison between Film-GAN and other

seven state-of-art approaches that can translate digital

image to film image, included GAN-based methods

CycleGAN [4], MUNIT [23] and StarGAN v2 [5], other

methods [2], Fast NST [3], SAVI2I [46] and DiffuseIT

[47]. Since other datasets do not have paired film-digital

images, we adopt the commonly used Inception Score (IS)

[48] and Frechet Inception Distance (FID) [49] to measure

the quality of the generated images and the similarity to the

target domain distribution. IS directly evaluates the quality

Table 1 Quantitative

comparison in three film effects

translation

Method Kodak Gold 200 Kodak Portra 160 Ilford Hp5

IS" FID# IS" FID# IS" FID#

Gatys [2] 5.69 157.84 5.53 161.42 6.67 141.45

Fast NST [3] 3.02 166.38 3.95 157.12 3.82 138.49

CycleGAN [4] 5.99 157.16 6.13 163.49 7.58 145.13

MUNIT [23] 5.84 150.56 5.69 154.93 7.35 160.06

StarGAN v2 [5] 6.48 139.94 12.17 135.25 8.01 141.44

SAVI2I [46] 5.62 157.28 3.41 169.47 6.76 148.15

DiffuseIT [47] 2.21 252.15 2.12 263.89 2.52 190.9

FilmGAN 7.92 132.83 12.23 131.49 14.45 123.4

Smartphone Image Denoising Dataset (SIDD) [43]. Each 
sample of Dpre is a size of 256 � 256, normalized and 
optimized by cropping and horizontal flipping. In the 
training process, dataset Dtrain has two sub-datasets, which 
are source image set and reference image set. There are 786 
images for Kodak Gold 200, 807 images for Kodak Portra 
160 and 775 images for Ilford HP5 in each of the two sets. 
They have the same film styles and quantity, without 
sharing the image content, i.e., the images from two sub-
datasets are different. Each sample of Dtrain is normalized 
and optimized by horizontal flipping and angle-correction 
with final size of 256 � 256. In our experiment, we utilize 
all of the samples as training set. For testing set Dtest, in  
order to test the performance better, we sample 100 photos 
for source images, which are 50 digital photos from the 
public dataset ImageNet [44], 50 digital photos from a 
smartphone with following camera parameters: 48 MP 1/ 
1.32 inch Quad-Bayer sensor, 25 mm equivalent f/1.85 
lens, Phase Detection Autofocus (PDAF) and Optical 
Image Stabilization (OIS). Additionally, we take 100 ref-
erence-image sets in the structure of [Kodak Gold 200, 
Kodak Portra 160, Ilford HP5]. For each digital image, the 
model generates its three film-style transformations 
according to the reference. Dtest has the same normaliza-

tion, optimization and image size as Dtrain.

4.2 Training details

For pre-training denoising module Mdn and extracting 
noise module Men, each sample of Dpre are fixed to 3 
channels in RGB domain. We set parameters kdn ¼ 1 and 
kcom ¼ 1 in Equation 3, and employ Adam solver [45] with 
batch size of 4. In the first 100 epochs, the learning rate is 
set to 0.0001, and the learning rate decreases linearly to 0 
in the next 100 epochs.

For training part, each sample of Dtrain and Dtest are 
fixed in RGB domain. The parameters in Ltotal are set to 
kcol ¼ 1; knoi ¼ 1; kcyc ¼ 1; kin ¼ 1. We employ Adam 
solver [45] with a batch size of 5. In the first 100 epochs,



and diversity of generated images, while FID calculates the

divergence between the generated images and the real

images in the feature space. We evaluated the dataset of

Kodak Gold 200, Kodak Portra 160 and Ilford Hp5,

respectively, as shown in Table 1. Our model achieves the

best IS and FID on both Kodak Gold 200 and Ilford Hp5,

and has similar IS values to StarGAN on the Kodak Portra

160 dataset. We provide the generated samples for visual

comparison, which is conducted in processing film effect of

Kodak Gold 200, taking seven digital images as input and

using the same Kodak Gold 200 image for reference. In

Fig. 3, the results of all referenced methods have a com-

mon defect, which is the reduction of graininess. This issue

exists in both deep learning-based methods and GAN-

based methods, and they probably ignore this feature to a

certain extent without learning the features of graininess.

On the other hand, in terms of colour, because they process

reference image without separating noise, and the contents

of the reference image and the source image are irrelevant,

the models lose some information about the original image

during the restoration process, resulting in overlapping or

confusing colours, and overall visual is unsatisfactory.

4.5 User survey

We invited 26 volunteers to participate in the user survey.

They are divided into two groups: Group A contains 13

people with film photography experience, and Group B

contains other people without relevant experience. We

randomly select nine photos in the test dataset Dtest and

convert them into different film styles using various mod-

els, including [2], Fast NST [3], CycleGAN [4], MUNIT

[23], StarGAN v2 [5], SAVI2I [46] and DiffuseIT [47]. For

each image, all volunteers need to vote for one or two

models that they think have the best film. Since it is mul-

tiple choice, we use the ratio of votes to the number of

participants to calculate the support rate for each model.

The results are shown in Fig. 5, Film-GAN obtained a

support ratio of 82:91% and 73:50% in Group A and Group

B, respectively, which is more popular than the results of

other models.

5 Conclusions

Generating analogue-film-like photos from digital images

is a practical and challenging task. In this paper, we pro-

pose Film-GAN, the first GAN-based approach for

unpaired digital-to-film translation. We implement one-to-

three film style translations as an example, converting

digital images into Kodak Gold 200, Kodak Portra 160, and

Ilford Hp5 film styles, respectively. By separately pro-

cessing the two important film features, colour and grain-

iness, using the innovated CNE network, Film-GAN

significantly improves the digital-to-film translation over

existing solutions. Experiment results demonstrate the

outstanding generative photo quality of our model, and

statistical measures confirm that Film-GAN outperforms

other state-of-the-art methods.

Although this research makes some progress in gener-

ating realistic film images, there are still limitations that

need to be addressed. This research solely focuses on the

authenticity of the generated images, while other aspects,

such as control over grain density and diversity, have not

been thoroughly explored. Therefore, future research could

consider further optimizing the generator model to enhance

grain diversity, for instance, by introducing parameters that

control the level of grain. Additionally, further research can

explore the application and generalization of the model on

different film datasets to validate its universality and

robustness.

Data availability The datasets generated and analyzed during the
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tiple private film collections and cannot be disclosed without autho-

rization from the original authors. However, they can be obtained

from the corresponding author upon reasonable request.
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Fig. 5 A user survey on the performance of various models. The

histograms (left) show the support ratio for each model, calculated as

the ratio of votes to participation. The boxplots (right) show the

number of votes each model received
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