30 research outputs found

    Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens

    Get PDF
    Simple Summary Microbial bio-stimulants are attracting increasing attention in agricultural research. In particular, plant growth-promoting rhizobacteria (PGPR) have great potential to improve crops' productivity and tolerance of biotic and abiotic stresses. It is anticipated that PGPR could eventually replace synthetic fungicides in agriculture. This research evaluated Pseudomonas aeruginosa strain FG106-which was isolated from tomato plants- as a potential biocontrol agent against several plant pathogens. This strain displayed multiple plant growth-promoting attributes and high in vitro and in vivo inhibition of growth and pathogenicity of tested phytopathogens. It is thus a multifunctional PGPR with potential applications as a biocontrol agent to control fungal and bacterial pathogens. P. aeruginosa strain FG106 was isolated from the rhizosphere of tomato plants and identified through morphological analysis, 16S rRNA gene sequencing, and whole-genome sequencing. In vitro and in vivo experiments demonstrated that this strain could control several pathogens on tomato, potato, taro, and strawberry. Volatile and non-volatile metabolites produced by the strain are known to adversely affect the tested pathogens. FG106 showed clear antagonism against Alternaria alternata, Botrytis cinerea, Clavibacter michiganensis subsp. michiganensis, Phytophthora colocasiae, P. infestans, Rhizoctonia solani, and Xanthomonas euvesicatoria pv. perforans. FG106 produced proteases and lipases while also inducing high phosphate solubilization, producing siderophores, ammonia, indole acetic acid (IAA), and hydrogen cyanide (HCN) and forming biofilms that promote plant growth and facilitate biocontrol. Genome mining approaches showed that this strain harbors genes related to biocontrol and growth promotion. These results suggest that this bacterial strain provides good protection against pathogens of several agriculturally important plants via direct and indirect modes of action and could thus be a valuable bio-control agent

    Bifidobacterium bifidum PRL2010 alleviates intestinal ischemia/reperfusion injury

    Get PDF
    Mesenteric ischemia/reperfusion is a clinical emergency with high morbidity and mortality due to the transient reduction of blood supply to the bowel. In recent years, the critical contribution of gut microbiome to human health and proper gastrointestinal functions has gradually emerged. In the current study, we investigated the protective effects of five days supplementation with Bifidobacterium bifidum PRL2010 in a murine model of gut ischemia/reperfusion. Our findings indicate that animals pretreated with B. bifidum PRL2010 showed lower neutrophil recruitment in the lungs, remarkably reduced bacterial translocation and decreased transcription levels of TNFalpha and IL-10 both in liver and kidneys, at the same time increasing those of IL-12 in kidneys. Inhibiting the adhesion of pathogenic bacteria and boosting host innate immunity responses are among the possible protective mechanisms enacted by the probiotic. These results demonstrate that short-period treatment with B. bifidum PRL2010 is a potential strategy to dampen remote organ injury due to mesenteric ischemia/reperfusion

    Effects of initial-state dynamics on collective flow within a coupled transport and viscous hydrodynamic approach

    Full text link
    We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within A MultiPhase Transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.120.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider(LHC) over a wide range of centrality: differential anisotropic flow vn(pT) (n=26)v_n(p_T) ~(n=2-6), event-plane correlations, correlation between v2v_2 and v3v_3, and cumulant ratio v2{4}/v2{2}v_2\{4\}/v_2\{2\}.Comment: 10 pages, v2: minor revisio

    Designation of optimal reference strains representing the infant gut bifidobacterial species through a comprehensive multi-omics approach

    Get PDF
    The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings

    Genetic strategies for sex-biased persistence of gut microbes across human life

    Get PDF
    Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.We thank GenProbio Srl for the financial support of the Laboratory of Probiogenomics. Part of this research is conducted using the High- Performance Computing (HPC) facility of the University of Parma. This research has financially been supported by the Programme “FIL-Quota Incentivante” of University of Parma and co-sponsored by Fondazione Cariparma”. D.v.S. is a member of APC Microbiome Ireland funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant no. SFI/12/RC/2273-P1 and SFI/12/RC/ 2273-P2). G.T. has been supported by “Fondazione Cariparma” in the framework of the project entitled “Parma Microbiota”. LMV has been supported by by “Programma Operativo Nazionale 2014–2020 of the Italian Ministry of University and Research. The funding from Project AGL2017-83653R (Spanish “Ministerio de Ciencia, Innovación y Universidades (MCIU)”, “Agencia Estatal de Investigación (AEI)” and FEDER) is also acknowledged

    Bifidobacterial distribution across Italian cheeses produced from raw milk

    Get PDF
    Cheese microbiota is of high industrial relevance due to its crucial role in defining the organoleptic features of the final product. Nevertheless, the composition of and possible microbe–microbe interactions between these bacterial populations have never been assessed down to the species-level. For this reason, 16S rRNA gene microbial profiling combined with internally transcribed spacer (ITS)-mediated bifidobacterial profiling analyses of various cheeses produced with raw milk were performed in order to achieve an in-depth view of the bifidobacterial populations present in these microbially fermented food matrices. Moreover, statistical elaboration of the data collected in this study revealed the existence of community state types characterized by the dominance of specific microbial genera that appear to shape the overall cheese microbiota through an interactive network responsible for species-specific modulatory effects on the bifidobacterial population

    Phylotype-level profiling of lactobacilli in highly complex environments by means of an ITS-based metagenomic approach

    Get PDF
    The genus Lactobacillus is a widespread taxon, members of which are highly relevant to functional and fermented foods, while they are also commonly present in host-associated gut and vaginal microbiota. Substantial efforts have been undertaken to disclose the genetic repertoire of all members of the genus Lactobacillus, yet their species-level profiling in complex matrices is still undeveloped due to the poor phylotype resolution of profiling approaches based on the 16S rRNA gene. To overcome this limitation, an ITS-based profiling method was developed to accurately profile lactobacilli at species-level. This approach encompasses a genus-specific primer pair combined with a database of ITS sequences retrieved from all available Lactobacillus genomes and a script for the Qiime software suite that performs all required steps to reconstruct a species-level profile. This methodology was applied to several environments, i.e., human gut and vagina, cecum of free range chickens, as well as whey and fresh cheese. Interestingly, data collected confirmed a relevant role of lactobacilli present in functional and fermented foods in defining the population harbored by the human gut, while, unsurprisingly perhaps, the cecum of free range chickens was observed to be dominated by lactobacilli characterized in birds living in natural environments. Moreover, vaginal swabs confirmed the existence of previously-hypothesized community state types, while analysis of whey and fresh cheese revealed a dominant presence of single Lactobacillus species used as starters for cheese production. Furthermore, application of this ITS profiling method to a mock Lactobacillus community allowed a minimal resolution level of <0.006 ng/μl. Importance: The genus Lactobacillus is a large and ubiquitous taxon of high scientific and commercial relevance. Despite the fact that the genetic repertoire of lactobacilli species has been extensively characterized, the ecology of this genus has been explored by metataxonomic techniques that are accurate down to the genus or phylogenetic group level only. Thus, the distribution of lactobacilli in environmental or processed food samples is relatively unexplored. The profiling protocol described here relies on the use of the Internally Transcribed Spacer to perform an accurate classification in a target population of lactobacilli with <0.006 ng/μl sensitivity. This approach was used to analyze five sample types collected from both human and animal host-associated microbiota as well as from the cheese production chain. Availability of a tool for species-level profiling of lactobacilli may be highly useful for both academic research and a wide range of industrial applications

    Multi-omics approaches to decipher the impact of diet and host physiology on the mammalian gut microbiome

    Get PDF
    In recent years, various studies have demonstrated that the gut microbiota influences host metabolism. However, these studies were focused primarily on a single or a limited range of host species, thus preventing a full exploration of possible taxonomic and functional adaptations by gut microbiota members as a result of host-microbe coevolution events. In the current study, the microbial taxonomic profiles of 250 fecal samples, corresponding to 77 host species that cover the mammalian branch of the tree of life, were reconstructed by 16S rRNA gene-based sequence analysis. Moreover, shotgun metagenomics was employed to investigate the metabolic potential of the fecal microbiomes of 24 mammals, and subsequent statistical analyses were performed to assess the impact of host diet and corresponding physiology of the digestive system on gut microbiota composition and functionality. Functional data were confirmed and extended through metatranscriptome assessment of gut microbial populations of eight animals, thus providing insights into the transcriptional response of gut microbiota to specific dietary lifestyles. Therefore, the analyses performed in this study support the notion that the metabolic features of the mammalian gut microbiota have adapted to maximize energy extraction from the host's diet.IMPORTANCE Diet and host physiology have been recognized as main factors affecting both taxonomic composition and functional features of the mammalian gut microbiota. However, very few studies have investigated the bacterial biodiversity of mammals by using large sample numbers that correspond to multiple mammalian species, thus resulting in an incomplete understanding of the functional aspects of their microbiome. Therefore, we investigated the bacterial taxonomic composition of 250 fecal samples belonging to 77 host species distributed along the tree of life in order to assess how diet and host physiology impact the intestinal microbial community by selecting specific microbial players. Conversely, the application of shotgun metagenomics and metatranscriptomics approaches to a group of selected fecal samples allowed us to shed light on both metabolic features and transcriptional responses of the intestinal bacterial community based on different diets

    Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens

    No full text
    P. aeruginosa strain FG106 was isolated from the rhizosphere of tomato plants and identified through morphological analysis, 16S rRNA gene sequencing, and whole-genome sequencing. In vitro and in vivo experiments demonstrated that this strain could control several pathogens on tomato, potato, taro, and strawberry. Volatile and non-volatile metabolites produced by the strain are known to adversely affect the tested pathogens. FG106 showed clear antagonism against Alternaria alternata, Botrytis cinerea, Clavibacter michiganensis subsp. michiganensis, Phytophthora colocasiae, P. infestans, Rhizoctonia solani, and Xanthomonas euvesicatoria pv. perforans. FG106 produced proteases and lipases while also inducing high phosphate solubilization, producing siderophores, ammonia, indole acetic acid (IAA), and hydrogen cyanide (HCN) and forming biofilms that promote plant growth and facilitate biocontrol. Genome mining approaches showed that this strain harbors genes related to biocontrol and growth promotion. These results suggest that this bacterial strain provides good protection against pathogens of several agriculturally important plants via direct and indirect modes of action and could thus be a valuable bio-control agent

    Probiogenomics Analysis of 97 Lactobacillus crispatus Strains as a Tool for the Identification of Promising Next-Generation Probiotics

    No full text
    Members of the genus Lactobacillus represent the most common colonizers of the human vagina and are well-known for preserving vaginal health and contrasting the colonization of opportunistic pathogens. Remarkably, high abundance of Lactobacillus crispatus in the vaginal environment has been linked to vaginal health, leading to the widespread use of many L. crispatus strains as probiotics. Nevertheless, despite the scientific and industrial relevance of this species, a comprehensive investigation of the genomics of L. crispatus taxon is still missing. For this reason, we have performed a comparative genomics analysis of 97 L. crispatus strains, encompassing 16 strains sequenced in the framework of this study alongside 81 additional publicly available genome sequences. Thus, allowing the dissection of the L.crispatus pan-genome and core-genome followed by a comprehensive phylogenetic analysis based on the predicted core genes that revealed clustering based on ecological origin. Subsequently, a genomics-targeted approach, i.e., probiogenomics analysis, was applied for in-depth analysis of the eight L. crispatus strains of human origin sequenced in this study. In detail their genetic repertoire was screened for strain-specific genes responsible for phenotypic features that may guide the identification of optimal candidates for next-generation probiotics. The latter includes bacteriocin production, carbohydrates transport and metabolism, as well as a range of features that may be responsible for improved ecological fitness. In silico results regarding the genetic repertoire involved in carbohydrate metabolism were also validated by growth assays on a range of sugars, leading to the selection of putative novel probiotic strains
    corecore