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Abstract: Cheese microbiota is of high industrial relevance due to its crucial role in defining the 
organoleptic features of the final product. Nevertheless, the composition of and possible microbe–
microbe interactions between these bacterial populations have never been assessed down to the 
species-level. For this reason, 16S rRNA gene microbial profiling combined with internally 
transcribed spacer (ITS)-mediated bifidobacterial profiling analyses of various cheeses produced 
with raw milk were performed in order to achieve an in-depth view of the bifidobacterial 
populations present in these microbially fermented food matrices. Moreover, statistical elaboration 
of the data collected in this study revealed the existence of community state types characterized by 
the dominance of specific microbial genera that appear to shape the overall cheese microbiota 
through an interactive network responsible for species-specific modulatory effects on the 
bifidobacterial population. 
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1. Introduction 

Metagenomic analyses have only recently been applied to study bacterial populations harbored 
by cheese. Most metagenomic investigations rely on 16S rRNA gene-based microbial profiling due to 
its lower costs and accurate taxonomic assignment down to the genus level. Moreover, metagenomics 
does not require bacterial cultivation, thus allowing retrieval of complete taxonomic profiles, 
including bacteria that currently cannot be cultivated. This methodology has been applied to a range 
of cheeses, such as Tomme d’Orchies [1], mozzarella [2], Mexican cheeses [3], oscypek (Polish cheese) 
[4], Croatian cheeses [5], Belgian cheeses [6], Pico cheese (artisanal Azorean food) [7], caciocavallo [8], 
plaisentif [9] and Italian grana-like cheese [10]. Nevertheless, none of these studies reported data at 
sub-genus taxonomic levels, because the taxonomic depth achieved with 16S rRNA gene sequencing 
is limited in this regard. To overcome this limitation, a cost-effective tool based on sequencing of the 
internally transcribed spacer (ITS) region for accurate subspecies level profiling of the bifidobacterial 
population was recently described [11]. 

Members of the genus Bifidobacterium have been shown to represent common gut colonizers of 
many occupants on the mammalian branch of the tree of life [12]. During the last two decades 



Microorganisms 2019, 7, 599 2 of 12 

bifidobacteria have been extensively studied for their contribution to elicit a range of host health 
benefits, specifically during the first stages of life [13–15]. Among such reported health-promoting 
activities, bifidobacteria have been associated with key physiological aspects in infants, for example, 
the induction of mucus layer production and development of the gastro-intestinal tract, along with 
protection against (opportunistic) pathogens and maturation of the immune system [16–18]. 
However, positive biological roles have also been reported in adults, where their involvement in the 
breakdown of indigestible food components through expansion of the gut glycobiome is also 
considered of crucial relevance [19–21]. For these reasons, bifidobacteria are now widely recognized 
as key members of the human gut microbiota, being frequently used as functional ingredients in food 
products.  

Some bifidobacterial species have been reported to grow and survive in milk and dairy products 
[22,23]. This observation is supported by the genomic dissection of species-specific metabolic 
capabilities across the whole genus that highlights a range of bifidobacterial species possessing genes 
dedicated to the utilization of carbohydrates typically found in dairy matrices [19]. Furthermore, a 
recent strain-level assessment of horizontal transmission of bacteria across the Parmigiano Reggiano 
cheese production chain revealed that a bifidobacterial species harbored by dairy cattle and their 
associated environment are transferred to cheese produced from their raw milk, where it may 
colonize and persist in the consumers’ gut [23]. These data not only highlight that bifidobacteria may 
modulate the cheese microbiota, thus perhaps participating in the development of the organoleptic 
features of cheese, but that they may also modulate the gut microbiota of human consumers. 

Although these findings depict this genus as a member of the cheese microbiota exploiting milk 
as a vector, the distribution of bifidobacteria in fermented dairy products has never been assessed in 
detail. For this reason, we performed 16S rRNA gene-based microbial profiling and bifidobacterial 
ITS-based profiling of 21 cheeses that represent the most commonly consumed Italian cheeses made 
from unpasteurized milk. Notably, while profiling based on 16S rRNA, the gene is accurate only 
down to the genus level, but the ITS profiling approach allows an in depth taxonomic reconstruction 
of bifidobacterial communities down to the subspecies level.  

2. Methods 

2.1. Sample Collection 

All samples were kept on ice and shipped to the laboratory under frozen conditions where they 
were preserved at −80 °C until further processing.  

2.2. Bacterial DNA Extraction, 16S rRNA Gene PCR Amplification, and Sequencing 

Aliquots of cheese samples collected without RNAlater were subjected to bacterial DNA 
extraction using the QIAamp DNA Stool Mini Kit following the manufacturer’s extraction (Qiagen , 
Hilden, Germany). Partial 16S rRNA gene sequences were amplified from extracted DNA using 
primer pair Probio_Uni/Probio_Rev. targeting the V3 region of the 16S rRNA gene sequence [24]. 
Illumina adapter overhang nucleotide sequences were added to the partial 16S rRNA gene-specific 
amplicons, which were further processed involving the 16S Metagenomic Sequencing Library 
Preparation Protocol (Part #15044223 Rev.—Illumina). Amplifications were carried out using a Verity 
Thermocycler (Applied Biosystems, Foster City, CA, USA). The integrity of the PCR amplicons was 
analyzed by electrophoresis on a 2200 TapeStation Instrument (Agilent Technologies, Santa Clara, 
CA, USA). DNA products obtained following PCR-mediated amplification of the 16S rRNA gene 
sequences were purified by a magnetic purification step employing the Agencourt AMPure XP DNA 
purification beads (Beckman Coulter Genomics GmbH, Bernried, Germany) in order to remove 
primer dimers. DNA concentration of the amplified sequence library was determined by a 
fluorometric Qubit quantification system (Life Technologies, Carlsbad, CA, USA). Amplicons were 
diluted to a concentration of 4 nM, and 5 µL quantities of each diluted DNA amplicon sample were 
mixed to prepare the pooled final library. Sequencing was performed using an Illumina MiSeq 
sequencer with MiSeq Reagent Kit v3 chemicals. 
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2.3 16S rRNA/ITS Microbial Profiling 

Partial 16S rRNA gene sequences were amplified from extracted DNA using primer pair 
Probio_Uni/Probio_Rev, targeting the V3 region of the 16S rRNA gene sequence [24]. Partial ITS 
sequences were amplified from extracted DNA using primer pair Probio-bif_Uni/Probio-bif_Rev, 
which targets the spacer region between the 16S rRNA and the 23S rRNA genes within the ribosomal 
RNA (rRNA) locus [11]. Illumina adapter overhang nucleotide sequences were added to the partial 
16S rRNA gene-specific amplicons and to the targeted ITS amplicons of approximately 200 bp, which 
were further processed employing the 16S Metagenomic Sequencing Library Preparation Protocol 
(Part #15044223 Rev. B—Illumina). Amplifications were carried out using a Verity Thermocycler 
(Applied Biosystems). The integrity of the PCR amplicons was analyzed by electrophoresis on a 2200 
TapeStation Instrument (Agilent Technologies). DNA products obtained following PCR-mediated 
amplification of the 16S rRNA gene sequences were purified by a magnetic purification step 
involving the Agencourt AMPure XP DNA purification beads (Beckman Coulter Genomics GmbH, 
Bernried, Germany) in order to remove primer dimers. DNA concentration of the amplified sequence 
library was determined by a fluorimetric Qubit quantification system (Life Technologies). Amplicons 
were diluted to a concentration of 4 nM, and 5 µL quantities of each diluted DNA amplicon sample 
were mixed to prepare the pooled final library. Sequencing was performed using an Illumina MiSeq 
sequencer with MiSeq Reagent Kit v3 chemicals. 

2.4 16S rRNA/ITS Microbial Profiling Analysis 

Following sequencing, the fastq files were processed using QIIME2 software [25]. Paired-end 
reads were merged, and quality control retained sequences with a length between 140 and 400 bp, 
mean sequence quality score >25, and with truncation of a sequence at the first base if a low quality 
rolling 10 bp window was found. Sequences with mismatched forward and/or reverse primers were 
omitted. 16S rRNA gene and bifidobacterial ITS operational taxonomic units (OTUs) were defined at 
100% sequence homology using DADA2 [26] and OTUs with less than 2 sequences in at least one 
sample were removed. All reads were classified to the lowest possible taxonomic rank using QIIME2 
[25,27] and a reference dataset from the SILVA database [28], in case of 16S rRNA gene sequences, or 
a custom bifidobacterial ITS database [11]. Biodiversity of the samples (alpha-diversity) was 
calculated with Chao1 index.  

2.5. Statistical Analysis 

All statistical analyses (i.e., ANOVA, PERMANOVA, Student’s t-test as well as the Kendall tau 
rank co-variance analysis) were performed with SPSS software v. 22 (IBM SPSS Statistics for 
Windows, Version 22.0. Armonk, NY, USAS: IBM Corp.). The force-driven network was created 
using Gephi (Available online: https://gephi.org/) and modularity was defined with a resolution of 
0.6 

3. Results and Discussion  

3.1. Dissecting the Distribution of Bifidobacteria Across Italian Cheese 

Samples of 21 Italian cheeses were collected in order to obtain a general overview of the 
distribution of bifidobacteria in such fermented dairy products (Table S1). We focused on cheeses 
produced from raw milk (i.e., without any pasteurization step or any other treatments that may have 
negatively affected bacterial viability), in order to include only dairy products that are more likely to 
harbor living bacteria (Table S1). Due to its relevance as a commonly consumed dairy product, ricotta 
was also included in the sampled cheeses. It is relevant to underline that ricotta is a derivate of whey 
obtained from raw milk that is subsequently cooked at a temperature of >80 °C, which is likely to kill 
most (vegetative) bacterial cells though it will not destroy DNA and will therefore still produce a 
metagenomic profile. All samples were subjected to 16S rRNA gene microbial profiling for 
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reconstruction of the taxonomic composition at the genus level, generating a total of 973,861 sequence 
reads, with an average of 46,374 reads per sample (Table S1). 

Sequencing data were used to generate rarefaction curves of the alpha-diversity based on the 
observed OTU index. The obtained graph showed that all sequenced samples tend to reach a plateau, 
thus indicating that our sequencing efforts covered the vast majority of the biodiversity present in 
the cheeses that had been included in the analysis (Figure S1). Intriguingly, the three fresh (non-aged) 
ricotta (cheese samples 7, 9, and 10) included in this study showed higher microbial biodiversity 
compared to other cheeses, including aged ricotta (cheese sample 8). This may reflect the fact that, in 
contrast to other cheeses included in this study, ricotta is a “whey cheese” produced from coagulation 
of proteins present in whey (i.e., the liquid remaining after the milk has been curdled and strained). 
Moreover, the cooking at >80 °C step required for ricotta production may lead to the inclusion of a 
small portion of dead cells in the metagenomic profiles obtained, thus leading to higher observed 
biodiversity. Nevertheless, as shown below, the taxonomic and beta-diversity data obtained did not 
reveal any major shift in the overall profiles when compared to other raw milk cheeses (Figure S2, 
Figure 1), thus ricotta samples were included in all further analyses. 

Beta-diversity analysis based on the Bray–Curtis index calculated for genus-level profiles was 
also conducted and represented through PCoA (Figure S2). Interestingly, we observed two clusters, 
named Cluster A and Cluster B, constituted respectively by 14 and five cheeses with similar profiles 
(Figure S2).  

In order to elucidate the taxonomic differences between cheese constituting the two clusters that 
were observed by beta-diversity analysis, we analyzed the genus-level composition obtained from 
16S rRNA gene microbial profiling data (Figure 1). Notably, samples establishing Cluster A were 
shown to be dominated (total relative abundance >90%) by the genera Streptococcus and Lactobacillus, 
with the exception of sample Cheese 8 showing 38.2% of Staphylococcus (Figure 1). Manual 
classification of 16S OTUs corresponding to Staphylococcus found in Cheese 8 resulted in its putative 
designation to species Staphylococcus equorum. Interestingly, a subspecies of this taxon was previously 
isolated from Swiss mountain cheeses [29]. Furthermore, Cluster B included the cheese samples 
whose microbiota was dominated (>70%) by Lactococcus, while cheese samples falling outside these 
clusters were shown to exhibit variable profiles (Figure 1). 

Intriguingly, cheese samples showing the highest microbial biodiversity (>40 OTUs) are 
widespread across the whole PCoA representation (Figure S2), also falling in Clusters A and B, thus 
indicating the relevance of low-abundance components of the cheese microbiota in defining the 
overall biodiversity (Figure S2). In addition, we also observed that three of the four Toma cheeses 
included in this study, encompassing two with high microbial biodiversity (Cheese 4 and 5) and two 
with low microbial biodiversity (Cheese 6 and 13), fall in Cluster B (Figure S2), thus indicating that 
cheesemaking of Toma cheese favors higher variability in the microbiota biodiversity, probably due 
to environmental effects linked to the different production sites such as milk microbiota, while 
supporting high abundance of Lactococcus genus (Figure 1). 

Together, these data indicate that Streptococcus/Lactobacillus-dominant and Lactococcus-dominant 
microbiota represent the most prevalent cheese community state types (cheese CST) in raw cheese 
produced with unpasteurized milk, named respectively cheese CST 1 and cheese CST 2. 

In this context, it is worth mentioning that we could not find any correlation between production 
site, use of natural whey starters (back-slopping and no specific bacterial starters were used for the 
sampled cheeses) or cheese ripening (Table S1) and cheese CST. Intriguingly, this may indicate that 
complex environmental factors or/and specific characteristics of strains persisting in the production 
chain may be responsible for the establishment of the specific equilibrium among cheese microbiota 
members. 

Assessment of the relative abundance of bifidobacteria across the sampled cheeses revealed that 
the Bifidobacterium genus could be detected only in seven samples with a relative abundance ranging 
from 0.02% to 0.22% (Figure 1). Notably, this indicates that bifidobacteria represent just a minor 
microbial component in raw cheese and that their abundance is probably linked to environmental 
peculiarities of each production site. 
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Figure 1. Taxonomic dissection of the raw cheese microbiota. (a) shows a bar plot representation of 
the taxonomic composition at the genus level of the profiled microbiota from cheese samples included 
in this study. Only taxa with relative abundance of >1% are shown. (b) reports the relative abundance 
of bifidobacteria observed by 16S rRNA gene microbial profiling data in the 21 raw cheese samples. 
(c) depicts the bifidobacterial biodiversity, reported as the number of operational taxonomic units 
(OTUs), obtained from bifidobacterial internally transcribed spacer (ITS) profiling data. 
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Using the seven samples with detectable levels of the genus Bifidobacterium, we performed an 
evaluation of co-variances between bifidobacteria and other members of the cheese microbiota based 
on the Kendal index. Notably such analyses revealed that the presence of bifidobacteria positively 
correlates with the presence of the genus Propionibacterium (co-variance of 0.845, p-value < 0.05). 

In the context of this study, we also evaluated if the use of starter cultures/natural whey or 
thermal treatments at a temperature of >50 °C during the production of the sampled cheeses may 
impact their microbiota composition. Notably, we did not identify any clear correlation. 
Nevertheless, a higher sampling size is needed for a statistically robust assessment of these 
correlations in order to determine the precise impact of geographical localization/production site in 
defining the microbial composition. 

3.2. Assessment of The Bifidobacterial Population at The Subspecies Level 

The availability of a reliable tool for subspecies classification of members of the genus 
Bifidobacterium, which is based on sequencing of the internally transcribed spacer (ITS) sequence [11], 
allowed us to perform a precise profiling of the bifidobacterial communities across the sampled 
cheeses. Notably, since this approach relies on targeted amplification of the ITS sequence of 
bifidobacteria through genus-specific primers, we were able to reconstruct the bifidobacterial 
population of 12 cheeses encompassing five samples for which the presence of this genus could 
initially not be detected by 16S rRNA gene-based sequencing data (Table S1). The latter was probably 
caused by the low relative abundance of bifidobacterial when compared to the total microbial 
population. Sequencing of the ITS amplicon produced a total of 66,011 reads, with an average of 5501 
reads per sample (Table S1). Due to the low number of reads obtained for sample Cheese 5 (245), it 
was excluded from further analyses. 

Alpha-diversity analysis based on the number of observed OTUs showed that the biodiversity 
of the bifidobacterial population may vary considerably, ranging from six to 100 OTUs (Figure 1), 
disregarding sequencing depth and cheese type, thus emphasizing the relevance of environmental 
effects associated with each production site in defining the cheese microbiota. 

Moreover, beta-diversity analysis obtained using the Bray–Curtis index and species-level 
profiles generated a PCoA representation that allowed identification of three clusters named BifA, 
BifB, and BifC (Figure 2). Inspection of the taxonomic profiles at species level revealed that the 
microbiota of cheese included in clusters BifA and BifC are dominated by both Bifidobacterium 
mongoliense and Bifidobacterium crudilactis, with cluster BifA showing a higher abundance of 
Bifidobacterium pseudolongum subsp. globosum (average of 11.7%) (Figure 2). In contrast, cluster BifB is 
characterized by a dominance of B. crudilactis (average of 92.9%) with much lower average abundance 
of B. mongoliense (average of 4.0%) (Figure 2). Notably, these findings confirm previous observations 
about the adaptation of B. crudilactis and B. mongoliense to grow and survive in milk and cheese 
environments [22,23,30,31], and reveal the widespread distribution of these bifidobacterial species in 
cheeses produced from raw milk derived from cow, buffalo, sheep, and goat. 

Further analysis of the taxonomic profiles also showed that seven additional species are present 
with an average relative abundance of >0.5% of the whole bifidobacterial population (Figure 2). These 
taxa encompass four known species (i.e., Bifidobacterium animalis subsp. lactis, Bifidobacteirum longum 
subsp. longum, Bifidobacterium pseudolongum subsp. pseudolongum, and Bifidobacterium adolescentis), 
along with three putative novel bifidobacterial species named new_taxa_2, new_taxa_60, and 
new_taxa_63 based on previously defined nomenclature [12] (Figure 2). Interestingly, isolation and 
genomic characterization of these putative novel taxa will be relevant for a complete understanding 
of the bifidobacterial ecology in cheese environments. 
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Figure 2. Taxonomic dissection of the bifidobacterial population harbored by raw cheese. (a) shows a 
PCoA representation of the beta-diversity analysis performed for bifidobacterial ITS data at species 
level using the Bray–Curtis index. (b) displays a bar plot representation of the bifidobacterial 
population at the species level observed in 11 ‘raw’ cheese samples (i.e., those for which we could 
obtain data). Only taxa with an average abundance >0.5% are shown. 
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3.3. Co-Variances between Bifidobacteria and Other Cheese Colonizers 

In order to evaluate how the bifidobacterial population modulates and is modulated by non-
bifidobacterial components of the cheese microbiota, we performed normalization of ITS profiles 
with relative abundance of bifidobacteria detected by 16S rRNA gene microbial profiling. Profiling 
data of the 10 bifidobacterial species showing an average abundance of >0.0001% after normalization, 
when compared to the total bacterial population, were used to evaluate co-variances with genera 
showing an average relative abundance of >0.01%. The resulting covariance matrix was then used to 
compute a force-driven network (Figure 3). Intriguingly, modularity assessment performed through 
Gephi software revealed the presence of three main clusters of covariant taxa. Remarkably, the 
network cluster NC1 covers the genera Streptococcus and Lactobacillus (Figure 3) (i.e., the dominant 
taxa observed in cheese CST 1), while the cluster NC2 covers the genus Lactococcus (Figure 3), the 
dominant taxa found in cheese CST 2. Moreover, the third cluster predicted by the modularity 
analysis encompasses the fourth most abundant genera observed in raw cheese (i.e., Staphylococcus) 
(Figure 3). Intriguingly, these data reveal that the dominant genera found in raw cheese modulate 
the whole microbiota by covariance with a range of accessory low-abundance taxa. Focusing on the 
most abundant species encompassing the bifidobacterial population of raw cheese (see above), B. 
mongoliense, B. crudilactis, and B. pseudolongum subps. globosum cluster in NC1, NC2, and NC3, 
respectively.  

Remarkably, these findings highlight that the species-level composition of accessory genera 
present at low relative abundance, such as the bifidobacterial population, are shaped by an intricate 
network of covariances with the dominant genera harbored by raw cheese. 

4. Conclusions 

The ecology of microbial populations constituting the cheese microbiota made from raw milk 
has never been assessed in detail using metagenomic-based approaches. For this reason, 16S rRNA 
gene-based microbial profiling was employed to obtain a comprehensive view of the genus-level 
composition, while bifidobacterial ITS profiling allowed an in-depth exploration of the taxonomic 
composition of the Bifidobacterium genus at the species level. The obtained results revealed 
community state types typical of the ‘raw’ cheese microbiota, named cheese CST1 and cheese CST2, 
characterized by dominance of Streptococcus/Lactobacillus or Lactococcus genera. In addition, data 
collected suggest that the genus Staphylococcus also plays a dominant role in a limited number of 
cases, thus additional screening of raw cheese samples is needed to confirm this assumption. 
Furthermore, in-depth analysis of the ITS profiling data showed that B. mongoliense and B. crudilactis 
constitute the dominant members of the bifidobacterial population and define specific bifidobacterial 
community state types, thereby confirming previous observations that their genetic repertoire 
supports colonization of the ecological niches of milk and cheese. 

Intriguingly, covariance analyses encompassing 16S rRNA and ITS-based taxonomic profiles 
revealed that the four dominant genera found in raw cheese (i.e., Streptococcus, Lactobacillus, 
Lactococcus, and Staphylococcus), shape the whole raw cheese microbiota through a complex network 
of covariances that modulate even low relative abundance genera with species-level resolution. 

Data collected in this study underline that complete understanding of the intricate relationships 
between members of the microbiota of cheese produced using unpasteurized milk will be of key 
industrial relevance due to the crucial role exerted by these bacteria in defining the organoleptic 
features of corresponding fresh and aged cheese products.  
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Figure 3. Force-driven network representation of co-variances among bifidobacterial species and 
other genera in raw cheese. The force-driven network was generated using taxa as nodes and co-
variances as edges. Only genera with a relative abundance of >0.01% and bifidobacterial species with 
normalized relative abundance > 0.0001% were included in the analysis. Edge color indicates positive 
correlations (in green) and negative correlations (in red). 

Supplementary Materials: Table S1. Quality filtering table of cheese included in this study. Figure S1. Evaluation 
of alpha-diversity of the raw cheese microbiota. Panel a shows rarefaction curves of the number of observed 16S 
rRNA gene OTUs generated at 100 % identity that were obtained for the 21 ‘raw’ cheese samples included in 
this study. Panel b illustrates through a bar plot the number of observed 16S rRNA gene OTUs generated at 100 
% observed at 20,000 reads. Figure S2. Beta-diversity analysis of the raw cheese microbiota. The PCoA 
representation was obtained from inter-variability assessment through the Bray–Curtis index and genus-level 
profiles retrieved from 16S rRNA gene microbial profiling data. 
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