21 research outputs found

    An 82 Inclination Debris Cloud Revealed by Radar

    Get PDF
    The statistical debris measurement campaigns conducted by the Haystack Ultrawideband Satellite Imaging Radar on behalf of the NASA Orbital Debris Program Office are used to characterize the long-term behavior of the small, low Earth orbit (LEO) orbital debris environment. Recent analyses have revealed the presence of a persistent LEO small debris cloud, which has no accompanying large component, cataloged by the U.S. Space Surveillance Network. This cloud, at an inclination of approximately 82 and below 1200 km in altitude does, however, correspond to the heavily trafficked region of space that has suffered several known, accidental collisions, e.g., Cosmos 1934 and Cosmos 2251. In this paper, we describe the observed cloud and model it using the NASA Standard Satellite Breakup Model. Key features of the cloud model, including source attribution and debris mass constraints, are presented to enable further observations and characterization

    An Analysis of Recent Major Breakups in the Low Earth Orbit Region

    Get PDF
    Of the 4 recent major breakup events, the FY-1C ASAT test and the collision between Iridium 33 and Cosmos 2251 generated the most long-term impact to the environment. About half of the fragments will still remain in orbit at least 20 years after the breakup. The A/M distribution of the Cosmos 2251 fragments is well-described by the NASA Breakup Model. Satellites made of modern materials (such as Iridium 33), equipped with large solar panels, or covered with large MLI layers (such as FY-1C) may generated significant amount of high A/M fragments upon breakup

    Analysis of WFPC-2 Core Samples for MMOD Discrimination

    Get PDF
    An examination of the Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center during the summer of 2009. Immediately apparent was the predominance of impact features, identified as simple or complex craters, resident only in the thermal paint layer; similar features were observed during a prior survey of the WFPC-1 radiator. Larger impact features displayed spallation zones, darkened areas, and other features not observed in impacts onto bare surfaces. Craters were extracted by coring the radiator in the NASA Johnson Space Centers Space Exposed Hardware cleanroom and were subsequently examined using scanning electron microscopy/energy dispersive X-ray spectroscopy to determine the likely origin, e.g., micrometeoritic or orbital debris, of the impacting projectile. Recently, a selection of large cores was re-examined using a new technique developed to overcome some limitations of traditional crater imaging and analysis. This technique, motivated by thin section analysis, examines a polished, lateral surface area revealed by cross-sectioning the core sample. This paper reviews the technique, the classification rubric as extended by this technique, and results to date

    Interpretation of Impact Features on the Surface of the WFPC-2 Radiator

    Get PDF
    An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was the predominance of impact features resident only in the thermal paint layer; similar phenomenology was observed during a prior survey of the WFPC-1 radiator. As well, larger impact features displayed spallation zones, darkened areas, and other features not encountered in impacts onto bare surfaces. Whereas the characterization of impact features by depth and diameter on unpainted surfaces has been long established, the mitigation provided by the painted layer presented a challenge to further analysis of the WFPC-2 features; a literature search revealed no systematic characterization of the ballistic limit equations of painted or coated surfaces. In order to characterize the impactors responsible for the observed damage, an understanding of the cratering and spallation phenomenology of the painted surface was required. To address that challenge, NASA sponsored a series of hypervelocity calibration shots at the White Sands Test Facility (WSTF). This effort required the following activities: the production, painting, and artificial ageing of test coupons in a manner similar to the actual radiator; the determination of the test matrix parameters projectile diameter and material (mass density), impact velocity, and impact angle, so as to enable both an adequate characterization of the impact by projectile and impact geometry and support hydrocode modeling to fill in and extend the applicability of the calibration shots; the selection of suitable projectiles; logistics; and an analysis of feature characteristics upon return of the coupons. This paper reports the results of the test campaign and presents ballistic limit equations for painted surfaces. We also present initial results of our interpretation methodologies

    Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    Get PDF
    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models

    NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0

    Get PDF
    The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements

    The NASA Orbital Debris Engineering Model 3.1: Development, Verification, and Validation

    Get PDF
    The NASA Orbital Debris Program Office has developed the Orbital Debris Engineering Model (ORDEM) primarily as a tool for spacecraft designers and other users to understand the long-term risk of collisions with orbital debris. The newest version, ORDEM 3.1, incorporates the latest and highest fidelity datasets available to build and validate representative orbital debris populations encompassing low Earth orbit (LEO) to geosynchronous orbit (GEO) altitudes for the years 2016-2050. ORDEM 3.1 models fluxes for object sizes > 10 m within or transiting LEO and > 10 cm in GEO. The deterministic portion of the populations in ORDEM 3.1 is based on the U.S. Space Surveillance Network (SSN) catalog, which provides coverage down to approximately 10 cm in LEO and 1 m in GEO. Observational datasets from radar, in situ, and optical sources provide a foundation from which the model populations are statistically extrapolated to smaller sizes and orbit regions that are not well-covered by the SSN catalog, yet may pose the greatest threat to operational spacecraft. Objects in LEO ranging from approximately 5 mm to 10 cm are modeled using observational data from ground-based radar, namely the Haystack Ultrawideband Satellite Imaging Radar (HUSIR formerly known as Haystack). The LEO population smaller than approximately 3 mm in size is characterized based on a reanalysis of in situ data from impacts to the windows and radiators of the U.S. Space Transportation System orbiter vehicle, i.e., the Space Shuttle. Data from impacts on the Hubble Space Telescope are also used to validate the sub-millimeter model populations in LEO. Debris in GEO with sizes ranging from 10 cm to 1 m is modeled using optical measurement data from the Michigan Orbital DEbris Survey Telescope (MODEST). Specific, major debris-producing events, including the Fengyun-1C, Iridium 33, and Cosmos 2251 debris clouds, and unique populations, such as sodium-potassium droplets, have been re-examined and are modeled and added to the ORDEM environment separately. The debris environment greater than 1 mm is forecast using NASAs LEO-to- GEO ENvironment Debris model (LEGEND). Future explosions of intact objects and collisions involving objects greater than 10 cm are assessed statistically, and the NASA Standard Satellite Breakup Model is used to generate fragments from these events. Fragments smaller than 10 cm are further differentiated based on material density categories, i.e., high-, medium-, and low-density, to better characterize the potential debris risk posed to spacecraft. The future projection of the sub-millimeter environment is computed using a special small-particle degradation model where small particles are created from intact spacecraft and rocket bodies. This work discusses the development, features, and capabilities of the ORDEM 3.1 model; the ne new data analyses used to build the model populations; and sample verification and validation results

    Development of the Space Debris Sensor (SDS)

    Get PDF
    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed

    Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    Get PDF
    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC)

    Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Microanalysis and Recognition of Micrometeoroid Compositions

    Get PDF
    Postflight surveys of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope have located hundreds of features on the 2.2 by 0.8 m curved plate, evidence of hypervelocity impact by small particles during 16 years of exposure to space in low Earth orbit (LEO). The radiator has a 100 - 200 micron surface layer of white paint, overlying 4 mm thick Al alloy, which was not fully penetrated by any impact. Over 460 WFPC2 samples were extracted by coring at JSC. About half were sent to NHM in a collaborative program with NASA, ESA and IBC. The structural and compositional heterogeneity at micrometer scale required microanalysis by electron and ion beam microscopes to determine the nature of the impactors (artificial orbital debris, or natural micrometeoroids, MM). Examples of MM impacts are described elsewhere. Here we describe the development of novel electron beam analysis protocols, required to recognize the subtle traces of MM residues
    corecore