23 research outputs found

    Exploiting seismic signal and noise in an intracratonic environment to constrain crustal structure and source parameters of infrequent earthquakes

    Get PDF
    In many regions of the world characterized by a relatively low rate of seismicity, the determination of local and regional seismic source parameters is often restricted to an analysis of the first onsets of P waves (or first motion analysis) due to incomplete information about Earth structure and the small size of the events. When rare large earthquakes occur in these regions, their waveforms can be used to model Earth structure. This, however, makes the nature of the earthquake source determination problem circular, as source information is mapped as structure. Presented here is one possible remedy to this situation, where through a two-step approach we first constrain Earth structure using data independent of the earthquake of interest. In this study, we focus on a region in Western Australia with low seismicity and minimal instrument coverage and use the CAPRA/LP temporary deployment to demonstrate that reliable structural models of the upper lithosphere can be obtained from an independent collection of teleseismic and ambient noise datasets. Apart from teleseismic receiver functions (RFs), we obtain group velocities from the cross-correlation of ambient noise and phase velocities from the traditional two-station method using carefully selected teleseismic earthquakes and station pairs. Crustal models are then developed through the joint inversion of dispersion data and RFs, and structural Green's functions are computed from a layered composite model. In the second step of this comprehensive approach, we apply full waveform inversion (three-component body and surface waves) to the 2007 M L= 5.3 Shark Bay, Western Australia, earthquake to estimate its source parameters (seismic moment, focal mechanism, and depth). We conclude that the full waveform inversion analysis provides constraints on the orientation of fault planes superior to a first motion interpretation

    High-frequency ambient noise tomography of southeast Australia: New constraints on Tasmania's tectonic past

    Get PDF
    The island of Tasmania, at the southeast tip of Australia, is an ideal natural laboratory for ambient noise tomography, as the surrounding oceans provide an energetic and relatively even distribution of noise sources. We extract Rayleigh wave dispersion curves from the continuous records of 104 stations with ∼15 km separation. Unlike most passive experiments of this type, which observe very little coherent noise below a 5 s period, we clearly detect energy at periods as short as 1 s, thanks largely to the close proximity of oceanic microseisms on all sides. The main structural elements of the eastern and northern Tasmanian crust are revealed by inverting the dispersion curves (between 1 and 12 s period) for both group and phase velocity maps. Of particular significance is a pronounced band of low velocity, observed across all periods, that underlies the Tamar River Valley and continues south until dissipating in southeast Tasmania. Together with evidence from combined active source and teleseismic tomography and heat flow data, we interpret this region as a diffuse zone of strong deformation associated with the mid-Paleozoic accretion of oceanic crust along the eastern margin of Proterozoic Tasmania, which has important implications for the evolution of the Tasman Orogen of eastern Australia. In the northwest, a narrower low-velocity anomaly is seen in the vicinity of the Arthur Lineament, which may be attributed to local sediments and strong deformation and folding associated with the final phases of the Tyennan Orogeny

    Structure of the crust and upper mantle beneath Bass Strait, southeast Australia, from teleseismic body wave tomography

    Get PDF
    Acknowledgments We thank many land owners and field team members from mainland Australia and Tasmania. Particular thanks to Armando Arcidiaco and Qi Li from ANU for assistance with the collection and archiving of the data used in this study. ARC grants DP120103673, LE120100061, LP110100256 and DP0986750 were instrumental in supporting the WOMBAT and BASS deployments.Peer reviewedPostprin

    Properties and biases of the global heat flow compilation

    Get PDF
    Geothermal heat flow is inferred from the gradient of temperature values in boreholes or short-penetration probe measurements. Such measurements are expensive and logistically challenging in remote locations and, therefore, often targeted to regions of economic interest. As a result, measurements are not distributed evenly. Some tectonic, geologic and even topographic settings are overrepresented in global heat flow compilations; other settings are underrepresented or completely missing. These limitations in representation have implications for empirical heat flow models that use catalogue data to assign heat flow by the similarity of observables. In this contribution, we analyse the sampling bias in the Global Heat Flow database of the International Heat Flow Commission; the most recent and extensive heat flow catalogue, and discuss the implications for accurate prediction and global appraisals. We also suggest correction weights to reduce the bias when the catalogue is used for empirical modelling. From comparison with auxiliary variables, we find that each of the following settings is highly overrepresented for heat flow measurements; continental crust, sedimentary rocks, volcanic rocks, and Phanerozoic regions with hydrocarbon exploration. Oceanic crust, cratons, and metamorphic rocks are underrepresented. The findings also suggest a general tendency to measure heat flow in areas where the values are elevated; however, this conclusion depends on which auxiliary variable is under consideration to determine the settings. We anticipate that using our correction weights to balance disproportional representation will improve empirical heat flow models for remote regions and assist in the ongoing assessment of the Global Heat Flow database

    A multiphase seismic investigation of the shallow subduction zone, southern North Island, New Zealand

    Get PDF
    The shallow structure of the Hikurangi margin, in particular the interface between the Australian Plate and the subducting Pacific Plate, is investigated using the traveltimes of direct and converted seismic phases from local earthquakes. Mode conversions take place as upgoing energy from earthquakes in the subducted slab crosses the plate interface. These PS and SP converted arrivals are observed as intermediate phases between the direct P and S waves. They place an additional constraint on the depth of the interface and enable the topography of the subducted plate to be mapped across the region. 301 suitable earthquakes were recorded by the Leeds (Tararua) broad-band seismic array, a temporary line of three-component short-period stations, and the permanent stations of the New Zealand national network. This provided coverage across the land area of southern North Island, New Zealand, at a total of 17 stations. Rays are traced through a structure parametrized using layered B-splines and the traveltime residuals inverted, simultaneously, for hypocentre relocation, interface depth and seismic velocity. The results are consistent with sediment in the northeast of the study region and gentle topography on the subducting plate. This study and recent tectonic reconstructions of the southwest Pacific suggest that the subducting plate consists of captured, oceanic crust. The anomalous nature of this crust partly accounts for the unusual features of the Hikurangi margin, e.g. the shallow trench, in comparison with the subducting margin further north

    Structure of the Tasmanian lithosphere from 3D seismic tomography

    No full text
    Seismic data from three separate experiments, a marine active source survey with land-based stations, and two teleseismic arrays deployed to record distant earthquakes, are combined in a joint inversion for the 3D seismic structure of the Tasmanian lithosphere. In total, travel-time information from nearly 14 000 source-receiver paths are used to constrain a detailed model of crustal velocity, Moho geometry and upper mantle velocity beneath the entire island. Synthetic reconstruction tests show good resolution beneath most of Tasmania with the exception of the southwest, where data coverage is sparse. The final model exhibits a number of well-constrained features that have important ramifications for the interpretation of Tasmanian tectonic history. The most prominent of these is a marked easterly transition from lower velocity crust to higher velocity crust which extends from the north coast, northeast of the Tamar River, down to the east coast. Other significant anomalies include elevated crustal velocities beneath the Mt Read Volcanics and Forth Metamorphic Complex; thickened crust beneath the Port Sorell and Badger Head Blocks in central northern Tasmania; and distinctly thinner, higher velocity crust beneath the Rocky Cape Block in northwest Tasmania. Combined with existing evidence from field mapping, potential-field surveys and geochemical data, the new results support the contention that east and west Tasmania were once passively joined as far back as the Ordovician, with the transition from lithosphere of Proterozoic continental origin to Phanerozoic oceanic origin occurring some 50 km east of the Tamar River; that the southeast margin of the Rocky Cape Block may have been a former site of subduction in the Cambrian; and that the Badger Head and Port Sorell Blocks were considerably shortened and thickened during the Cambrian Tyennan and Middle Devonian Tabberabberan Orogenies

    Core structure re-examined using new teleseismic data recorded in Antarctica: evidence for, at most, weak cylindrical seismic anisotropy in the inner core

    No full text
    We present a significant addition to the data set of traveltimes of seismic PKP waves that sample the Earth's lowermost mantle and core along the Earth's rotation axis. Recorded at permanent Global Seismic Network (GSN) and temporary SSCUA deployment broad-band seismographic stations in Antarctica, the new data improve the previously poor and biased coverage that underlies the seismic constraints on recent models of inner core structure and anisotropy. On the one hand, new differential PKP traveltime measurements improve the sampling of predominantly the eastern inner core hemisphere. PKPab-df and PKPbc-df differential traveltime residuals, with respect to the spherically symmetric model ak135, are consistently smaller than two seconds along the north-south paths sampled. Axially symmetric models of inner core seismic anisotropy with fast axis parallel to the Earth's rotation axis require a weak anisotropy of (0.7 ± 0.1) per cent to be consistent with our PKPbc-df observations. PKPbc-df residuals from the quasi-eastern hemisphere indicate (0.4 ± 0.1) per cent anisotropy. If only PKPbc-df observations from the top 200 km of this hemisphere are considered, this is reduced to (0.1 ± 0.2) per cent, consistent with an isotropic layer. On the other hand, new absolute PKP traveltime measurements add to the sampling of both hemispheres of the inner core, but it is difficult to use them with more confidence to assess structure of the core since they are affected by crustal and mantle structure and source uncertainties. The newly collected data set also increases constraints on D" structure beneath the South Pole. In contrast to previous inferences based on data from northern stations, we find no evidence of a velocity heterogeneity in the outer core near the inner core boundary associated with the cylinder tangent to the inner core in the southern hemisphere
    corecore