37 research outputs found

    Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”

    Get PDF
    Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings—(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance—persist even after controlling for other processes that might influence spatial relationships between adults and recruits

    Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradient

    Get PDF
    Among the local processes that determine species diversity in ecological communities, fluctuation‐dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness

    Major axes of variation in tree demography across global forests

    Get PDF
    The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio-temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems

    Mycorrhizal feedbacks influence global forest structure and diversity

    Get PDF
    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure

    Suwanvecho et al.Gibbon foods_2006-2011

    No full text
    This file contains data on fruit species eaten by the gibbon study group A during April-May follows for the six years 2006-2011. It contains for each visit to a fruit source: the tree species and tree number visited, date, time and fruit species code; and a summary of sources, no. of visits and no. of days for each species. The full species names are given in a separate sheet, copied from the SI on line file associated with Suwanvecho et al. 2017 in Biotropica

    Size‐dependent intraspecific variation in wood traits has little impact on aboveground carbon estimates in a tropical forest landscape

    No full text
    International audienceThere is increasing evidence that intraspecific trait variation plays a role in governing rates of ecosystem functioning. While wood traits such as wood specific gravity (WSG) and wood carbon concentration (WCC) are key drivers of forest aboveground carbon (AGC) stocks, the sources of intraspecific variation in these wood traits and the consequences of this variation on AGC are poorly known, especially in the tropics. Here, we investigated intraspecific variation in wood specific gravity (WSG) and wood carbon concentration (WCC) from 556 individual trees belonging to 15 species that well characterize different successional stages of seasonal evergreen forests in Southeast Asia. Specifically, we tested the contribution of individual or species characteristics (tree size, growth rate and regeneration guilds) and local environmental conditions (topographic wetness index and successional stages) to intraspecific variation in WSG and WCC, and assessed the consequences of intraspecific variation in these wood traits on AGC estimates in 14 permanent forest plots established along a successional gradient in Khao Yai National park, Thailand. We found that tree size was the main driver of intraspecific variation in WSG and WCC as tree sizes increased from 10–100 cm in diameter, WSG increased by 7.3%, while WCC increased by 2.4% in heartwood, 1.6% and 2.7% in sapwood without and with volatile carbon included. There was no effect of the topographic wetness and other local environment condition in wood traits led to a slight overestimation of AGC in young secondary forests (+0.09% to +1.29%) and a small underestimation in older forests (−0.86% to −2.87%), but overall AGC estimates (13 of 14 forest plots) remained within error margins (the 95% interval). Our study provides evidence that tree size variation translates into intraspecific variability in wood traits, whereas local environmental conditions related to topography successional stages had no effect on wood trait variability. While size-dependent variation in WSG and WCC have largely been undocumented and thus ignored in forest carbon assessment approaches, we highlight that it has a limited impact on AGC estimates, indicating that it does not invalidate current forest carbon stock estimation approaches. Read the free Plain Language Summary for this article on the Journal blog

    Dispersal success of a specialized tropical tree depends on complex interactions among diverse mammalian frugivores

    No full text
    The study of seed dispersal in tropical forest communities is complicated by the high diversity of frugivores and the complex interactions among species and their environments. Determining which species are effective dispersers and which are opportunists with neutral or even negative effects on fruiting plants is a major problem which requires detailed studies focused on particular plant species. In this study we focused on seed dispersal of the wild rambutan (Nephelium melliferum) which supplies energy-rich fruits to primates and other mammals in a seasonal evergreen forest in central Thailand. We hypothesized that gibbons (Hylobates lar) were the most important dispersers and were capable of carrying and defecating seeds away from the tree crown where seeds or seedlings could escape increased distance or density-dependent mortality. We determined the seed dispersal effectiveness of all major arboreal consumers of Nephelium fruit (gibbons, pig-tail monkeys, squirrels) by using data on fruit production and consumption from fruit/seed traps under the canopies of eight sample trees, observations on animals feeding in fruiting trees, and seed deposition data at varying distances from tree crowns. We assessed the survival of seeds and seedlings in relation to distance from the crown by experiments and transect counts. Camera traps were used to detect consumption of seeds on the ground by terrestrial consumers. About half of the ripe fruit crop was harvested by squirrels which gnawed off the outer husk, ate the pulp and dropped intact seeds to the ground. Monkeys chewed and sucked off the pulp and dropped most seeds to the ground not far from the tree. Seeds and intact fruits dropped by squirrels and monkeys supported a large variety of terrestrial mammals most of which were seed predators. Gibbons, which swallow the seed with pulp attached, consumed only 16 % of the fruit crop but were the most effective and reliable seed dispersers overall, and appear to be the most specialized seed dispersal mutualist. Distance-dependent mortality was found in first-year seedlings, as well as evidence that further mortality must space out older saplings prior to recruitment into the tree population, which validates the importance of dispersal by gibbons. However, the great majority of fruits of Nephelium melliferum were consumed by mammalian opportunists and seed predators which interacted with one another in ways which depend on composition of the local community

    Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia

    No full text
    Recent studies have suggested that defaunation of large-bodied frugivores reduces above-ground carbon storage in tropical forests of South America and Africa, but not, or less so, in Southeast Asian tropical forests. Here we analyze the issue using the seed dispersal network (data of interaction between trees and animal seed dispersers) and forest composition of a 30-ha forest dynamics plot in central Thailand, where an intact fauna of primates, ungulates, bears and birds of all sizes still exists. We simulate the effect of two defaunation scenarios on forest biomass: 1) only primates extirpated (a realistic possibility in near future), and 2) extirpation of all large-bodied frugivores (LBF) including gibbons, macaques, hornbills and terrestrial mammals, the main targets of poachers in this region. For each scenario, we varied the population size reduction of the LBF dispersed tree species from 20% to 100%. We find that tree species dependent on seed dispersal by large-bodied frugivores (LBF) account for nearly one-third of the total carbon biomass on the plot, and that the community turnover following a complete defaunation would result in a carbon reduction of 2.4% to 3.0%, depending on the defaunation scenario and the model assumptions. The reduction was always greater than 1% when the defaunation intensity was at least 40%. These effect sizes are comparable to values reported for Neotropical forests, suggesting that the impact of defaunation on carbon deficit is not necessarily lower in Southeast Asian forests. The problem of defaunation in Asia, and the mutual benefits between biodiversity conservation and climate change mitigation, should therefore not be neglected by global policies to reduce carbon emissions

    Variations in leaf water status and drought tolerance of dominant tree species growing in multi-aged tropical forests in Thailand

    No full text
    International audienceLarge-scale abandoned agricultural areas in Southeast Asia resulted in patches of forests of multiple successions and characteristics, challenging the study of their responses to environmental changes, especially under climatic water stress. Here, we investigated seasonal variation in leaf water status and drought tolerance of dominant tree species in three multi-aged tropical forests, ranging from 5 to > 200 years old, with contrasting soil moisture in Thailand. Seasonal variation in leaf water status differed among the forests with trees in young and intermediate sites demonstrating larger differences between seasons than the old-growth forest. Although vulnerability to embolism curves revealed that trees in old-growth forest were potentially more sensitive to declining leaf water status than others, they were predicted to lose < 5% of their hydraulic capacity as opposed to 13% for the trees in the younger sites. Our results suggest that the responses to water stress of tree species in different forest ages greatly vary with a tendency of trees in younger sites to be more resilience than those in older sites. Such information would benefit the selection of tree species that could adapt well to specific environments, thus improving the strategies for managing forests of different ages under a warmer future
    corecore