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Abstract 100 

101 

Among the local processes that determine species diversity in ecological communities, 102 

fluctuation-dependent mechanisms that are mediated by temporal variability in the 103 

abundances of species populations have received significant attention. Higher temporal 104 

variability in the abundances of species populations can increase the strength of temporal 105 

niche partitioning but can also increase the risk of species extinctions, such that the net effect 106 

on species coexistence is not clear. We quantified this temporal population variability for tree 107 

species in 21 large forest plots and found much greater variability for higher latitude plots 108 

with fewer tree species. A fitted mechanistic model showed that among the forest plots, the 109 

net effect of temporal population variability on tree species coexistence was usually negative, 110 

but sometimes positive or negligible. Therefore, our results suggest that temporal variability 111 

in the abundances of species populations has no clear negative or positive contribution to the 112 

latitudinal gradient in tree species richness. 113 

114 

115 

Introduction 116 

117 

Variation in species diversity across the biosphere has fascinated ecologists for decades 118 

(Wallace 1878; Fischer 1960; Hutchinson 1961; Pianka 1966; Connell 1978; Palmer 1994; 119 

Chesson 2000; Hubbell 2001; Mittelbach et al. 2007; Levine & HilleRisLambers 2009; 120 

Ricklefs & He 2016). At the regional scale, community diversity is moderated by processes 121 

that act on large spatiotemporal scales, such as biogeographic and evolutionary processes 122 

(Rickefs 1987, 2004). A proportion of species in the regional community can disperse to a 123 

particular location, where they are subjected to a variety of localized abiotic and biotic 124 
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processes (Fig. 1; HilleRisLambers et al. 2012). These local processes filter the dispersing 125 

species, resulting in a locally coexisting subset of species. Laboratory experiments and 126 

ecological theory suggest that under the most basic conditions of a constant environment, few 127 

limiting resources and a lack of dispersal from a regional community, only a few species will 128 

coexist in a local community (Gause 1934). This observation has motivated research into 129 

processes that permit the coexistence of tens to hundreds of species in natural local 130 

communities, including lake plankton (Smith et al. 2005), reef corals (Roberts et al. 2002) 131 

and rainforest trees (Anderson-Teixeira et al. 2015). 132 

 133 

At a local scale, species coexistence can be facilitated by “fluctuation-dependent 134 

mechanisms” (Chesson 1994, 2000, 2018), which are a class of stabilizing mechanisms. 135 

Stabilizing mechanisms in general attenuate differences in the fitness of species in a local 136 

community, thereby helping to maintain local species richness (Chesson 2000, 2018; Levine 137 

et al. 2017; Barabás et al. 2018). Temporal fluctuation-dependent mechanisms in particular 138 

arise when a temporally changing environment causes changes in resource use among species 139 

in a local community over time, and hence variation in the abundances of the species 140 

populations over time. This results in “temporal niches” that may allow rare species in a local 141 

community to persist (Hutchinson 1961; Grubb 1977; Chesson 1994, 2000; Adler & Drake 142 

2008). While the ecological theory of temporal niches suggest a positive effect of 143 

environmental fluctuations on species richness (Hutchinson 1961; Grubb 1977; Chesson 144 

1994, 2000; Adler & Drake 2008), another ecological theory suggests just the opposite – that 145 

greater fluctuations in local environmental conditions can erode species richness, by 146 

periodically reducing species population abundances and thus increasing the risk of stochastic 147 

extinctions (Leigh 1981; Lande 1993; Adler & Drake 2008; Danino et al. 2016). The net 148 
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effect of these two opposing factors will determine how environmentally-induced temporal 149 

changes in species abundances contribute to local species richness.  150 

151  

152 Recent theoretical studies (Adler & Drake 2008; Danino et al. 2016) suggest that temporal 

153 niche effects generally dominate stochastic extinction effects when temporal environmental 

154 variance is low, with the opposite occurring when temporal environmental variance is 

155 sufficiently high. To the extent that greater temporal environmental variance increases the 

156 average amount by which the abundance of a species population changes over time, i.e. what 

157 we call “temporal population variability”, the theoretical studies (Adler & Drake 2008; 

158 Danino et al. 2016) have suggested that a small amount of temporal population variability 

159 generally has a net positive effect on species coexistence and hence species richness in local 

160 communities, but that a large amount of temporal population variability generally has a net 

161 negative effect. An unresolved question is whether this net effect tends to be positive or 

162 negative in natural populations. Several studies have used empirical data to quantify the 

163 stabilizing strength of temporal fluctuation-dependent mechanisms in a single community 

164 (Cáceres 1997; Adler et al. 2006; Angert et al. 2009; Usinowicz et al. 2012). Although these 

165 studies shed light on how important these mechanisms are for coexistence of species within a 

166 single community, they do not show how important they are in maintaining patterns of 

167 species richness across communities. A recent empirical study (Vásquez et al. 2004) did 

168 measure temporal population variability in multiple communities, but did not relate this to 

169 mechanisms that help to maintain species richness. 

 170 

Here, we investigated the effect of temporal population variability on species richness in 21 171 

forest tree communities, using a global dataset with repeated tree censuses (Anderson-172 

Teixeira et al. 2015). The tree communities span a large latitudinal range of 0.7°S to 45.6°N, 173 
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with tree species richness showing a declining trend away from the tropics (Appendix S1 in 174 

Supporting Information). We first performed regression analyses to investigate whether there 175 

was a corresponding latitudinal gradient in temporal population variability of tree species in 176 

the forest communities. We then quantified the net effect of this variability on tree species 177 

coexistence in the communities by fitting a mechanistic community model (Danino et al. 178 

2016) to the observed temporal abundance dynamics of tree species populations at each plot, 179 

and used the fitted model to predict the effects of temporal population variability on 180 

extinction rates of tree species in the communities. The results from all these analyses 181 

182 allowed us to assess whether temporal population variability makes a clear negative or 

positive contribution to the latitudinal gradient in tree species richness. 183 

184 

185 

Materials and methods 186 

187 

Tree census data 188 

189 

We used data from 21 of the 67 long-term forest plots from the Center for Tropical Forest 190 

Science–Forest Global Earth Observatory (CTFS–ForestGEO) network (Fig. 2). We selected 191 

these 21 forest plots because they had at least two tree censuses and a minimum area of 16 192 

ha. Data from multiple censuses allowed calculations of temporal population variability. 193 

Using the lower limit of 16 ha on plot area helped to reduce the number of small populations 194 

and hence the effects of demographic variance (Hubbell 2001), which could complicate 195 

interpretation of drivers of the observed temporal population variability. Here, demographic 196 

variance refers to variation in the realized demographic rates of species populations due to 197 

the random sampling of demographic events for discrete individuals, in contrast to temporal 198 
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environmental variance that refers to variation in the intrinsic demographic rates of species 199 

populations over time (Chisholm et al. 2014).  The 21 plots covered a total of 650 ha in four 200 

continents and spanned a wide range of climatic and edaphic conditions (Anderson-Teixeira 201 

et al. 2015). Approximately 3 million trees were censused in the 21 forest plots, with 202 

repeated censuses over periods of 6–31 yr. Each plot was censused according to a standard 203 

protocol, whereby all freestanding woody plants with diameter-at-breast-height (DBH; 1.3 m 204 

from the ground) ≥ 1 cm were identified to the lowest taxonomic level possible, mapped and 205 

recorded (Condit 1998). 206 

207 

Summary information for the 21 plots is provided in Appendix S1, together with further 208 

details on how the tree census data were processed. 209 

210 

Investigating latitudinal trends in temporal population variability 211 

212 

We performed regression analyses to quantify how temporal population variability of tree 213 

species in the 21 forest plots varied with latitude, considering trees with DBH ≥ 1 cm. 214 

Metrics of temporal population variability could potentially be biased by the total tree 215 

abundance varying substantially across plots and, to a lesser extent, censuses, because 216 

changes in total tree abundance alter the strength of density-dependent effects across plots 217 

(Appendix S2). Thus, we rarefied (sampled without replacement) the data for each census in 218 

each plot to a sample size of !min = 15,299, which was the minimum observed total tree 219 

abundance at any plot in any census (this minimum abundance occurred in the third census at 220 

Mudumalai plot). Although !min = 15,299 was usually much smaller than the number of 221 

trees in a census (by a factor of around nine on average), at each plot a sample of 15,299 222 

trees was large enough to give species population sizes up to hundreds or thousands of 223 
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individuals, with dynamics that were not dominated by demographic variance (Chisholm et 224 

al. 2014).  225 

226  

227 After rarefaction to the same number of individuals in each census (!min = 15,299), there 

228 remained another potential source of bias that must be accounted for: given a fixed total tree 

229 abundance, abundant species were over-represented in species-poor plots, while rare species 

230 were over-represented in species-rich plots. The resulting bias was problematic because a 

231 greater value of a temporal population variability metric at a plot could simply reflect species 

232 that were generally more abundant (abundant species tend to fluctuate more in absolute 

233 abundance; Lande 2003; Chisholm et al. 2014) rather than greater intrinsic temporal 

234 variability of the community (Appendix S2), which is what we were interested in. To remove 

235 this confounding factor, we corrected the rarefied changes in species abundances to account 

236 for the different sets of initial specie abundances in each pair of consecutive censuses, by 

237 only including changes in species abundances for which the corresponding initial species 

238 abundances are common to all plots (Appendices S2 and S3).  

 239 

To further test the robustness of our analyses to other possible sources of bias, we used 240 

another rarefaction procedure that standardized the sample area as well as the number of 241 

individuals, and that also standardized the number of individuals in a way that conserved the 242 

pairwise temporal correlations of species abundances in the dataset for a plot (Appendix S3). 243 

Standardizing the sample area removed bias due to the strength of ecological processes 244 

changing at different spatial scales (Levin 1992), whereas the conservation of temporal 245 

correlations was potentially important because these correlations are associated with the 246 

strength of temporal fluctuation-dependent mechanisms (Chesson 2000, 2018; Barabás et al. 247 

2018). Standardization of the sample area resulted in fewer trees in the rarefied dataset for 248 

Page 11 of 38 Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



! 11 

each plot: an average of 4,713 individuals across censuses (Appendix S3). In turn, this 249 

resulted in fewer (initial) species abundances common to all plots compared with the 250 

previous method of rarefaction – 16 compared with 222. Excluding the Mudumalai plot 251 

increased the number of species abundances common to all remaining plots from 16 to 20; 252 

excluding the Luquillo, Palanan and SERC plots as well further increased the number to 194 253 

(Appendix S3). Thus, to test robustness to the number of species abundances common to all 254 

plots, we performed three regressions using data rarefied in this way: one using data from all 255 

21 plots, one using data from the 20 plots that excluded Mudumalai, and one using data from 256 

the 17 plots that excluded Mudumalai, Luquillo, Palanan and SERC. 257 

258 

As our indicator of temporal population variability of tree species in each plot i, we used the 259 

mean absolute change in species abundance in a year, Δ!,. For a dataset from plot i, we 260 

calculated this indicator by first computing the absolute change in abundance of each tree 261 

species for each pair of consecutive censuses. We then divided each absolute change by the 262 

corresponding inter-census interval length in years and calculated the mean: 263 

264 

Δ!, =
1

-. − 1
1
0.,1

!.,123,4 − !.,1,4
5.,123,4 − 5.,1,4

67,8

493

:7;3

193

, (1) 265 

266 

where -. is the number of censuses of plot i, 0.,1 is the total number of species in census j at 267 

plot i for the dataset, !.,1,4 is the abundance of tree species k in census j at plot i for the 268 

dataset, and 5.,1,4 is the mean census date of individuals of species k in census j at plot i. If a 269 

species k was present in census j but absent in census < + 1 at plot i, then 5.,123,4 was set 270 

equal to the mean census date of individuals of all other species in census < + 1 at plot i. For 271 

each plot i, we calculated the average Δ!, over 1,000 rarefied datasets with a standardized 272 
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number of individuals and correction for different sets of initial species abundances among 273 

plots, thus producing the metric Δ!>,?,,. For each plot i, we repeated the calculation for 274 

rarefied datasets with a standardized area and number of individuals, conservation of the 275 

pairwise temporal correlations of species abundances, and correction for different sets of 276 

initial species abundances among plots. This produced the metric Δ!>@,A,, for plot i. 277 

278 

To determine the latitudinal trend in temporal population variability for the 21 forest plots, 279 

we computed separate linear regressions of Δ!>,A and Δ!>@,ABagainst absolute latitude. For 280 

each regression, a log-transformation was applied to both variables to reduce their skewness 281 

and help meet assumptions of normality and homoscedasticity (see Appendix S4 for details). 282 

283 

Relating temporal population variability to mechanisms maintaining species richness 284 

285 

For the forest plots, we related temporal population variability to mechanisms maintaining 286 

species richness, by fitting a dynamic, mechanistic community model to the observed values 287 

of temporal population variability and temporal correlations of species abundances in the 288 

rarefied data, and then using the fitted models to predict the rates of species extinction. Our 289 

mechanistic model represented a local community of J individuals competing for resources 290 

under temporally changing environmental conditions. In a model community, each species 291 

had a fitness value that determined its recruitment rate in the prevailing environmental 292 

conditions. The fitness value of a species at the start of a simulation was drawn randomly 293 

from a lognormal distribution with mean 1 and variance A. At the beginning of each 294 

subsequent time-step in the simulation, the fitness values for all species were redrawn 295 

independently from the lognormal distribution with probability 1/D, which indirectly 296 

represented changes in environmental conditions. Therefore, D measured the temporal 297 
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correlation in environmental conditions. The model we used captured the effects of 298 

deterministic selection (arising from fitness differences among species in a given 299 

environment; Vellend 2010), stochastic ecological drift (Hubbell 2001) and stochastic local-300 

scale environmental fluctuations over time (Lande 2003; Chisholm et al. 2014; Kalyuzhny et 301 

al. 2014, 2015; Fung et al., 2016). Fig. 3 provides a schematic diagram of the model. 302 

 303 

The model we used was the same as that of Danino et al. (2016) except that we allowed J to 304 

vary over time and did not allow the introduction of new species over time. Not allowing the 305 

introduction of new species into a model community meant that the community did not 306 

receive immigrants from an outside source. This was appropriate for our analysis, as we 307 

wanted to isolate the effects of local temporal population variability in tree species from 308 

regional effects introduced by immigration. For each plot, we fitted the model to the census 309 

data rarefied by area and the number of individuals, in a way that conserved the temporal 310 

correlations of species abundances within the plot. When fitting our model to the rarefied 311 

data, we assumed that the observed abundance fluctuations over the census periods 312 

approximated those that would be found in the absence of immigration. This assumption was 313 

justified when the number of individuals in the rarefied dataset was much larger than the 314 

square root of the number of individuals, because the number of immigrant propagules 315 

should scale roughly with the perimeter (i.e., the square root) of the area occupied by the 316 

individuals whereas the number of non-immigrant propagules scales with the area. To ensure 317 

that this assumption was valid, when fitting the model we excluded the Mudumalai plot, 318 

which had the fewest censused individuals. This increased the mean sample size after 319 

rarefaction from 4,713 to 13,000, such that the number of individuals at each plot was two 320 

orders of magnitude greater than the square root of the number of individuals. 321 

322 
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To fit the model to data from a plot, we simulated the model for different combinations of A 323 

and D, representing different environmental regimes. Specifically, for each plot, we 324 

performed simulations for all combinations of 32 values of E in the range 0, 10G  and 14 325 

values of D in the range 1, 10H , representing a large parameter space spanning several orders 326 

of magnitude in E and D. During each simulation for a plot, the initial species composition 327 

was set equal to the species composition in the first census of a rarefied dataset. We then 328 

simulated model dynamics for a length of time equal to the entire census period for the plot, 329 

with J for the model community changing linearly in between censuses to match the number 330 

of individuals in the rarefied dataset at each census. At the end of each simulation, we 331 

calculated temporal population variability from the simulated data using eq. (1), as well as 332 

the mean cumulative distribution function (cdf) of pairwise temporal correlations of species 333 

abundances over a pair of consecutive censuses. For each plot, we performed 1,000 334 

simulations for each of the 32×14 = 448 combinations of E and D, and determined the 335 

combination that gave the lowest typical error, where the error is defined as the average of (i) 336 

the percentage absolute difference between the model and observed temporal population 337 

variability and (ii) the percentage absolute difference between the model and observed cdf of 338 

temporal correlations. In addition, we determined the combinations of E and D that produced 339 

similar errors to the combination giving the lowest typical error – we refer to all these as the 340 

“best-fit combinations” (see Appendix S5 for details, including a definition of “typical 341 

error”). 342 

 343 

For each plot and each combination of E and D, we ran a further 100 simulations, each lasting 344 

the entire census period (as described in the previous paragraph) and a further 2×10M time-345 

steps, which was sufficient time for up to tens to hundreds of species extinctions to occur. At 346 

the end of each simulation, we recorded the number of species that were extinct. During the 347 
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348 last 2×10M time-steps, J was assumed to remain constant, such that it remained equal to the 

349 sample size in the last census. Different assumptions that involve varying J according to 

350 some pattern would likely have little effect on the relative number of species extinctions that 

351 occurred among different environmental regimes (combinations of E and D) within a plot. 

352 However, because the sample size in the last census was different for each plot (only the 

353 mean sample size across censuses was approximately the same among plots; Appendix S3), 

354 simulations for different plots had different J in the last 2×10M time-steps (which represented 

355 0.655–1.31 generations). Because species extinction times change with J (e.g., Chisholm & 

356 O’Dwyer 2014; Danino et al. 2018), these simulations did not allow an unbiased comparison 

357 of species extinction risk across different plots. Furthermore, for different plots J might vary 

358 in different ways beyond the census periods. For these reasons, we restricted interpretation of 

359 our simulation results for a plot to patterns of species extinction risk within that plot. 

360 Appendix S5 provides further details of the dynamic model, how it was simulated, and how it 

361 was fitted to the data. 

 362 

We found that for 13 of the 20 plots, the best-fit models for the observed data gave low errors 363 

(see Results). For these 13 plots, we used our mechanistic model results to investigate 364 

whether greater temporal population variability was associated with a greater species 365 

extinction rate within each plot. To do this, we noted that temporal population variability 366 

almost always increased with E and D in the model (Fig. S13 in Appendix S5), such that we 367 

can use these two parameters as drivers of temporal population variability. For each plot, we 368 

calculated the mean number of extinctions (across 100 simulations) for the different 369 

combinations of E and D described above. Then, starting with the best-fit combinations of E 370 

and D, we determined what the effect of further increases in either parameter – and hence in 371 

temporal population variability – would be on extinctions. For the model tree community 372 
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corresponding to a particular forest plot, if increases in temporal population variability due to 373 

increases in a parameter led to more extinctions, then this suggested that the real tree 374 

community in the plot was in a regime where increases in temporal population variability due 375 

to that parameter have a net negative effect on species coexistence and richness. Conversely, 376 

if increases in temporal population variability due to increases in a parameter led to fewer 377 

extinctions in the model tree community, then this suggested that the real tree community 378 

was in a regime where increases in temporal population variability due to that parameter have 379 

a net positive effect on species coexistence and richness (i.e., temporal niche effects were 380 

strong). 381 

 382 

All simulations and statistical analyses described were performed using R v.3.3.3 (R 383 

Development Core Team 2013). As part of the Supporting Information, we have provided an 384 

R script with code corresponding to the dynamic model simulations used in our study 385 

(“R_code_for_dynamic_models.R”). The code provides two functions, one for producing 386 

model simulations used to assess bias in metrics of temporal population variability 387 

(represented schematically in Fig. S1 in Appendix S2) and the other for producing model 388 

simulations used to fit the dynamic model to the tree census data (represented schematically 389 

in Fig. 3).  390 

391 

 392 

Results 393 

 394 

In our first regression analysis, we found that temporal population variability showed a 395 

substantial positive correlation with absolute latitude for the 21 forest plots examined, where 396 

the variability was calculated as the mean absolute change in tree species abundance per year, 397 
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using the plot datasets rarefied by number of individuals (Δ!>,AB; linear regression on log-log 398 

axes: R2 = 0.350, slope = 0.251, P = 4.76!10–3, n = 21; Fig. 4A; Appendix S4). In our second 399 

regression analysis, temporal population variability was calculated using the plot datasets 400 

rarefied by plot area and the number of individuals, in a way that conserved temporal 401 

correlations of species abundances (Δ!>@,A). In this analysis, we still found a substantial 402 

positive correlation of variability with absolute latitude, regardless of whether we used data 403 

from all 21 plots (R2 = 0.243, slope = 0.326, P = 0.0233, n = 21; Fig. 4B; Appendix S4); the 404 

20 plots that excluded Mudumalai (R2 = 0.416, slope = 0.354, P = 2.13!10–3, n = 20; Fig. 4C; 405 

Appendix S4); or the 17 plots that excluded Mudumalai, Luquillo, Palanan and SERC (R2 = 406 

0.469, slope = 0.357, P = 2.42!10–3, n = 17; Fig. 4D; Appendix S4). For the first of these 407 

three regressions (using 21 plots), the Shapiro–Wilk test and quantile plot indicated non-408 

normality (Fig. S12 in Appendix S4). Thus, we also performed a non-parametric regression, 409 

which again exhibited a substantial positive correlation (Spearman’s N = 0.643, P = 2.13!10–410 

3, n = 21). 411 

412 

From the fits of our dynamic model to data from the forest plots, we found that for 11 of the 413 

20 plots considered (excluding Mudumalai, see Materials and methods), at least one 414 

combination of E and D (the two parameters governing temporal population variability) gave 415 

values of the simulated temporal population variability and cdfs of temporal correlations of 416 

species abundances reasonably close to the observed data, with small typical errors of < 10% 417 

that we call “good model fits” (Figs. S14–S16 and Table S6 in Appendix S5). Two of the 418 

remaining nine plots (Lenda and Luquillo) had a combination of E and D with a typical error 419 

of 10–10.5%, which we call “marginally good model fits” (Figs. S15 and S16, and Table S6). 420 

However, for the remaining seven plots (Gutianshan, Lambir, Pasoh, SERC, Sinharaja, 421 
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Wabikon and Yasuni), the best-fit combination gave larger typical errors (> 11.2%; Table 422 

S6).  423 

 424 

For 11 of the 13 plots with good or marginally good model fits, the best-fit models 425 

(corresponding to the best-fit combinations of E and D) were within a parameter regime 426 

where E was sufficiently large that further increases in D would likely increase the mean 427 

number of extinctions (Fig. 5 and Figs. S17 and S18 in Appendix S5). For the remaining two 428 

plots (Khao Chong and Lenda), the best-fit models were within a parameter regime where E 429 

was sufficiently small that further increases in D would likely have negligible effect on the 430 

mean number of extinctions (Figs. S17 and S18). However, only six of the 13 plots (Khao 431 

Chong and Lenda were not among these six plots) had best-fit models that were within a 432 

parameter regime where D was sufficiently large that further increases in E would likely 433 

increase the mean number of extinctions (Figs. 5, S17 and S18). The best-fit models for 434 

seven of the 13 plots were within a parameter regime where D was sufficiently small that 435 

further increases in E would likely decrease (five plots) or have negligible effect (two plots) 436 

on the mean number of extinctions (Figs. 5, S17 and S18).  437 

438 

 439 

Discussion 440 

 441 

For the tree communities in the 21 forest plots that we examined, we documented a strong 442 

trend of increasing temporal population variability of tree species with absolute latitude. The 443 

temporal population variability increased by three- to four-fold over 45 degrees of latitude, 444 

from tropical forests at the equator to temperate forests in the northern hemisphere. A 445 

previous study (Condit et al. 2006) of ten of the 21 forest plots that we used in this study 446 
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identified a pattern of wider ranges of tree demographic rates in forests with fewer tree 447 

species, which is consistent with our finding of greater temporal population variability in the 448 

extratropical plots. However, the authors of that study (Condit et al. 2006) did not interpret 449 

their results in terms of whether greater temporal population variability increases the 450 

propensity for local extinctions of tree species.  451 

452  

453 If temporal population variability increases the extinction risk of tree species in our forest 

454 plots, then the latitudinal increase in temporal population variability could indicate 

455 increasingly negative effects on tree species coexistence for higher latitude plots. This could 

456 partially explain the latitudinal decline in tree species richness at local scales (Ricklefs & He, 

457 2016; Appendix S4). In this regard, results using our mechanistic model showed that for five 

458 of the 13 plots with good or marginally good model fits, increases in temporal population 

459 variability would likely result in a greater rate of species loss. For the remaining eight plots, 

460 increases in temporal population variability would likely result in a greater rate of species 

461 loss or a rate of species loss that was lower or almost the same, depending on whether the 

462 increase in temporal population variability was caused by greater temporal correlation in 

463  environmental conditions or greater fitness variation among species. Thus, these results 

464  indicate that for the tree communities that we examined, greater temporal population 

465 variability has mixed net effects on tree species coexistence, such that extinction effects can 

466 outweigh temporal niche effects or vice versa. Therefore, temporal population variability 

467 makes no clear negative or positive contribution to the latitudinal gradient in local tree 

468 species richness. Our results provide a more nuanced perspective on the effects of temporal 

469 population variability on local tree species richness, which does not only focus on the 

470 positive temporal niche effects (Usinowicz et al. 2017).  

471 
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Overall, our results suggest that temporal population variability is one of the factors with a 472 

substantial impact on local tree species richness, but we emphasize that it is by no means the 473 

only factor. In communities such as the ones that we have examined, the effects of temporal 474 

population variability on species coexistence are moderated by other local processes such as 475 

Janzen-Connell effects (Janzen 1970; Connell 1971; Bever et al. 1997; Bever 2003; Mangan 476 

et al. 2010) and resource partitioning (Meinzer et al. 1999; Turner 2008), and regional 477 

processes such as dispersal from regional communities of varying composition and richness 478 

(Ricklefs 1987, 2004; Hubbell 2001) (Fig. 1). Therefore, an important next step is to quantify 479 

the relative contributions of different local and regional processes to the maintenance of local 480 

species richness. Most studies to date have focused on either local (e.g., temporal fluctuation-481 

dependent mechanisms; Cáceres 1997; Adler et al. 2006; Angert et al. 2009; Usinowicz et al. 482 

2012, 2017; this study) or regional (e.g., dispersal; Hubbell 2001; Volkov et al. 2003, 2007) 483 

processes. A recent study (Ricklefs & He 2016) did partition variation in local tree species 484 

richness in 47 CTFS–ForestGEO forest plots according to local and regional processes, but 485 

used a statistical modeling approach that did not incorporate the actual mechanisms by which 486 

the processes affect richness. An alternative approach was used in other recent studies 487 

(Kalyuzhny et al. 2015; Fung et al. 2016), which fitted mechanistic models with dispersal, 488 

demographic stochasticity and local-scale temporal environmental fluctuations to the tree 489 

communities at the BCI and Pasoh CTFS–ForestGEO plots. However, these studies simply 490 

assumed that the regional community followed a log-series species abundance distribution. In 491 

contrast, other studies (Graham & Moritz 2006; Huntley et al. 2014) have considered the 492 

regional community more explicitly and emphasized the negative effects of temporal 493 

environmental fluctuations on richness at the long-term speciation–extinction balance. 494 

495 
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Our modeling analyses also help to shed light on the general question of how complex a 496 

dynamic, mechanistic model needs to be to accurately capture temporal population variability 497 

in an ecological community. Drift-only models with constant community sizes are inadequate 498 

in most cases (Chisholm & O’Dwyer 2014; Chisholm et al. 2014; Kalyuzhny et al. 2014; 499 

Fung et al. 2016). Our analyses suggest that adding temporal variation in recruitment rates 500 

(Chisholm et al. 2014; Kalyuzhny et al. 2015; Fung et al. 2016) and community sizes is 501 

generally sufficient to accurately capture temporal population variability. But in the six tree 502 

communities where our mechanistic model substantially under- or over-estimated observed 503 

temporal population variability, additional mechanisms are required to get a better 504 

approximation of the true temporal dynamics. These additional mechanisms include temporal 505 

variation in mortality rates of species (Chisholm et al. 2014) and resource partitioning 506 

(Meinzer et al. 1999; Turner 2008), which increase and decrease temporal population 507 

variability, respectively.  508 

 509 

A future research priority is to determine specific environmental variables that drive 510 

fluctuations of tree species abundances in specific forests. Over the time period studied, the 511 

forest plots we examined were buffeted by a range of environmental factors, such as drought 512 

(Condit et al. 1996), ground-fires (Baker et al. 2008), hurricanes/typhoons (Yap et al. 2016; 513 

Hogan et al. 2018) and insect herbivory (Gonzalez-Akre et al. 2016). Although many such 514 

factors can be identified, they are often idiosyncratic in nature and often act on population 515 

abundances via nonlinear causal pathways. Thus, the effects of different factors on temporal 516 

population variability are difficult to characterize in a simple way. For example, for the forest 517 

plots that we examined, a liner regression showed that temporal variability in mean monthly 518 

temperature and precipitation accounted for about a quarter to a third of the variation in the 519 

logarithm of temporal population variability (Appendix S4), leaving a substantial amount of 520 
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variation unexplained. Our hope is that more analyses of long-term datasets of forest 521 

dynamics will permit better identification of key environmental drivers. This will ultimately 522 

facilitate the development of parsimonious predictive models specifying the future dynamics 523 

of forest tree communities. 524 

525 
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Figures 745 

746 

Figure 1. Schematic diagram showing the processes structuring a local community, including 747 

its species diversity. The local community is embedded within a regional community, which 748 

is governed primarily by regional-scale processes. Because the regional community is much 749 

larger than the local community, dispersal and migration of individuals from the local to the 750 

regional community has negligible effect on regional community structure, but dispersal and 751 

migration of individuals from the regional to the local community does have substantial 752 

effects on local community structure. Local community structure is also affected substantially 753 

by local-scale processes, including mechanisms mediated by temporal changes in abundances 754 

of species populations, which are the focus of our study. 755 
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756 

Figure 2. Map of the 21 CTFS–ForestGEO forest plots considered in this study, with 757 

corresponding numbers of tree censuses in parentheses. BCI, SCBI and SERC stand for Barro 758 

Colorado Island, Smithsonian Conservation Biology Institute, and Smithsonian 759 

Environmental Research Center, respectively. 760 

761 

762 

763 

764 

765 

766 

Page 34 of 38Ecology Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Fy

! 34 

767 

Figure 3. Schematic diagram showing the processes operating in the dynamic, mechanistic model that we fitted to tree census data from each of 768 

20 forest plots. The diagram shows the processes operating over one model time-step. In the representations of the model communities, the 769 

yellow and red backgrounds refer to environmental conditions favoring the yellow and red species, respectively.770 
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771 
Figure 4. (A) Relationship between temporal population variability and absolute latitude for 772 

the 21 CTFS–ForestGEO forest plots considered in this study. Temporal population 773 

variability was measured as the mean absolute change in tree species abundance per year, 774 

with rarefaction to standardize the number of individuals and correction to account for the 775 

different sets of initial species abundances in each pair of consecutive censuses (Metric 1; 776 

Δ"#,%). The line represents a linear regression between the logarithms of the two variables, 777 

with the 95% confidence interval shown as the shaded region. (B) is the same as (A) except 778 

that temporal population variability was measured with rarefaction to standardize the plot 779 

area and number of individuals, in a way that conserved temporal correlations of species 780 
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abundances (Metric 2; Δ"#&,%). (C) is the same as (B) except that the plot at Mudumalai was 781 

excluded. (D) is the same as (B) except that the plots at Mudumalai, Luquillo, Palanan and 782 

SERC were excluded. Each empirical value (black dot) is labeled according to the plot it 783 

refers to: BCI (Barro Colorado Island), CHA (Changbaishan), EDO (Edoro), FUS (Fushan), 784 

GUT (Gutianshan), HKK (Huai Kha Khaeng), KHA (Khao Chong), KOR (Korup), LAP (La 785 

Planada), LAM (Lambir), LEN (Lenda), LUQ (Luquillo), MOS (Mo Singto), MUD 786 

(Mudumalai), PAL (Palanan), PAS (Pasoh), SCBI (Smithsonian Conservation Biology 787 

Institute), SERC (Smithsonian Environmental Research Center), SIN (Sinharaja), WAB 788 

(Wabikon) and YAS (Yasuni). 789 
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805 

Figure 5. Predicted mean number of extinctions (different colors) from simulations of a 806 

dynamic, mechanistic model for four of the CTFS–ForestGEO forest plots considered in this 807 

study. Each panel shows the predicted mean number of extinctions for different combinations 808 

of values of two key model parameters: the variance of the lognormal distribution of possible 809 

fitness values for each model species (A) and the correlation time determining how frequently 810 

the fitness values of all species were redrawn due to changes in environmental conditions (') 811 

(see Fig. 3). For each plot, the combination of parameter values giving the smallest median 812 

(typical) error (with respect to the temporal population variability and temporal correlations 813 

of species abundances), (, is marked with a yellow dot. Combinations of parameter values 814 
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producing errors below ( 25%–50% of the time are marked with orange dots, whereas 815 

combinations of parameter values producing errors below ( 12.5%–25% of the time are 816 

marked with brown dots. Together, these are the “best-fit combinations” (see text in 817 

Appendix S5 for details). The four plots shown span a wide latitudinal gradient, with 818 

latitudes of 1.56°N, 9.15°N, 24.8°N and 38.9°N for Edoro, BCI, Fushan and SCBI 819 

(Smithsonian Conservation Biology Institute), respectively.  820 
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