14,106 research outputs found
The exotic invasive plant Vincetoxicum rossicum is a strong competitor even outside its current realized climatic temperature range
Dog-strangling vine (Vincetoxicum rossicum) is an exotic plant originating from Central and Eastern Europe that is becoming increasingly invasive in southern Ontario, Canada. Once established, it successfully displaces local native plant species but mechanisms behind this plant’s high competitive ability are not fully understood. It is unknown whether cooler temperatures will limit the range expansion of V. rossicum, which has demonstrated high tolerance for other environmental variables such as light and soil moisture. Furthermore, if V. rossicum can establish outside its current climatic limit it is unknown whether competition with native species can significantly contribute to reduce fitness and slow down invasion. We conducted an experiment to test the potential of V. rossicum to spread into northern areas of Ontario using a set of growth chambers to simulate southern and northern Ontario climatic temperature regimes. We also tested plant-plant competition by growing V. rossicum in pots with a highly abundant native species, Solidago canadensis, and comparing growth responses to plants grown alone. We found that the fitness of V. rossicum was not affected by the cooler climate despite a delay in reproductive phenology. Growing V. rossicum with S. canadensis caused a significant reduction in seedpod biomass of V. rossicum. However, we did not detect a temperature x competition interaction in spite of evidence for adaptation of S. canadensis to cooler temperature conditions. We conclude that the spread of V. rossicum north within the tested range is unlikely to be limited by climatic temperature but competition with an abundant native species may contribute to slow it down
Absence of Gluonic Components in Axial and Tensor Mesons
A quarkonium-gluonium mixing scheme previously developed to describe the
characteristic of the pseudoscalar mesons is applied to axial and tensor
mesons. The parameters of the model are determined by fitting the eigenvalues
of a mass matrix. The corresponding eigenvectors give the proportion of light
quarks, strange quarks and glueball in each meson. However the predictions of
the model for branching ratios and electromagnetic decays are incompatible with
the experimental results. These results suggest the absence of gluonic
components in the states of axial and tensor isosinglet mesons analyzed here.Comment: 12 page
Analysis of a class of boundary value problems depending on left and right Caputo fractional derivatives
In this work we study boundary value problems associated to a nonlinear fractional ordinary differential equation involving left and right Caputo derivatives. We discuss the regularity of the solutions of such problems and, in particular, give precise necessary conditions so that the solutions are C1([0, 1]). Taking into account our analytical results, we address the numerical solution of those problems by the augmented-RBF method. Several examples illustrate the good performance of the numerical method.P.A. is partially supported by FCT, Portugal, through the program “Investigador FCT” with reference IF/00177/2013 and the scientific projects PEstOE/MAT/UI0208/2013 and PTDC/MAT-CAL/4334/2014. R.F. was supported by the “Fundação para a Ciência e a Tecnologia (FCT)” through the program “Investigador FCT” with reference IF/01345/2014.info:eu-repo/semantics/publishedVersio
On Logical Depth and the Running Time of Shortest Programs
The logical depth with significance of a finite binary string is the
shortest running time of a binary program for that can be compressed by at
most bits. There is another definition of logical depth. We give two
theorems about the quantitative relation between these versions: the first
theorem concerns a variation of a known fact with a new proof, the second
theorem and its proof are new. We select the above version of logical depth and
show the following. There is an infinite sequence of strings of increasing
length such that for each there is a such that the logical depth of the
th string as a function of is incomputable (it rises faster than any
computable function) but with replaced by the resuling function is
computable. Hence the maximal gap between the logical depths resulting from
incrementing appropriate 's by 1 rises faster than any computable function.
All functions mentioned are upper bounded by the Busy Beaver function. Since
for every string its logical depth is nonincreasing in , the minimal
computation time of the shortest programs for the sequence of strings as a
function of rises faster than any computable function but not so fast as
the Busy Beaver function.Comment: 12 pages LaTex (this supercedes arXiv:1301.4451
Comparative genomics reveals metabolic specificity of endozoicomonas isolated from a marine sponge and the genomic repertoire for host-bacteria symbioses
The most recently described bacterial members of the genus Endozoicomonas have been found in association with a wide variety of marine invertebrates. Despite their ubiquity in the host holobiont, limited information is available on the molecular genomic signatures of the symbiotic association of Endozoicomonas with marine sponges. Here, we generated a draft genome of Endozoicomonas sp. OPT23 isolated from the intertidal marine sponge Ophlitaspongia papilla and performed comprehensive comparative genomics analyses. Genome-specific analysis and metabolic pathway comparison of the members of the genus Endozoicomonas revealed the presence of gene clusters encoding for unique metabolic features, such as the utilization of carbon sources through lactate, L-rhamnose metabolism, and a phenylacetic acid degradation pathway in Endozoicomonas sp. OPT23. Moreover, the genome harbors genes encoding for eukaryotic-like proteins, such as ankyrin repeats, tetratricopeptide repeats, and Sel1 repeats, which likely facilitate sponge-bacterium attachment. The genome also encodes major secretion systems and homologs of effector molecules that seem to enable the sponge-associated bacterium to interact with the sponge and deliver the virulence factors for successful colonization. In conclusion, the genome analysis of Endozoicomonas sp. OPT23 revealed the presence of adaptive genomic signatures that might favor their symbiotic lifestyle within the sponge host.Anoop Alex was supported in part by the project PTDC/BIA-BMA/29985/2017 (POCI-01-0145-FEDER- 029985) from the European Regional Development Fund (ERDF) through COMPETE 2020—Operational Program for Competitiveness and Internationalization (POCI) and National Funds through the Fundação para a Ciência e a Tecnologia (FCT)/MCTES. Agostinho Antunes was funded in part by the Strategic Funding UID/Multi/04423/2019 through National Funds provided by FCT and the ERDF in the framework of the program PT2020, by the European Structural and Investment Funds (ESIF) through the Competitiveness and Internationalization Operational Program - COMPETE 2020 and by National Funds through the FCT under the project PTDC/AAG-GLO/6887/2014 (POCI-01-0124-FEDER-016845)
The Thermodynamics of Cosmic String densities in U(1) Scalar Field Theory
We present a full characterization of the phase transition in U(1) scalar
field theory and of the associated vortex string thermodynamics in 3D. We show
that phase transitions in the string densities exist and measure their critical
exponents, both for the long string and the short loops. Evidence for a natural
separation between these two string populations is presented. In particular our
results strongly indicate that an infinite string population will only exist
above the critical temperature. Canonical initial conditions for cosmic string
evolution are show to correspond to the infinite temperature limit of the
theory.Comment: 4 pages, 4 figures, RevTe
The role of dissipation in biasing the vacuum selection in quantum field theory at finite temperature
We study the symmetry breaking pattern of an O(4) symmetric model of scalar
fields, with both charged and neutral fields, interacting with a photon bath.
Nagasawa and Brandenberger argued that in favourable circumstances the vacuum
manifold would be reduced from S^3 to S^1. Here it is shown that a selective
condensation of the neutral fields, that are not directly coupled to photons,
can be achieved in the presence of a minimal ``external'' dissipation, i.e. not
related to interactions with a bath. This should be relevant in the early
universe or in heavy-ion collisions where dissipation occurs due to expansion.Comment: Final version to appear in Phys. Rev. D, 2 figures added, 2 new
sub-section
- …