106 research outputs found

    Comparison of metabolic abnormalities and clinical lipodystrophy 48 weeks after switching from HAART to Trizivir versus continued HAART: the Trizal study

    Get PDF
    PURPOSE: To analyze the evolution of clinical lipodystrophy (LD) and metabolic abnormalities in patients continuing to receive HAART versus patients switched to Trizivir (zidovudine, lamivudine, abacavir) after 48 weeks. METHOD: Patients treated with HAART >6 months with plasma HIV-1 RNA viral load (VL) <400 copies/mL and <50 copies/mL at screening were randomly assigned to continue HAART (103 patients) or to receive Trizivir (106 patients). Clinical LD was evaluated using a standardized patient questionnaire only at baseline, weeks 4 and 8, and then every 8 weeks until Week 48. Laboratory evaluation was performed every 4 weeks. RESULTS: The proportion of patients exhibiting >or=1 LD symptom at baseline was 40% in the Trizivir arm and 50% in HAART arm (difference not significant). After 48 weeks, the prevalence was 28% and 42% respectively (p =.03), and the median number of LD symptoms per patient was 2 in the Trizivir arm and 4 in the continued HAART arm (p =.016). Median decreases in cholesterol levels over the 48-week study period were greater in the Trizivir arm than in the continued HAART arm (-0.80 vs. -0.44 mmol/L; p lt.001). Median triglyceride levels decreased in the Trizivir arm but increased in the continued HAART arm (-0.17 and +0.01 mmol/L; p =.006). Suppression of VL was maintained in most patients with no differences between the two arms. CONCLUSION: A switch from "standard" HAART to Trizivir was associated with an improvement in clinical LD and blood lipid abnormalities after 48 weeks

    Hygienic characteristics of radishes grown in soil contaminated with Stenotrophomonas maltophilia

    Get PDF
    Background: Stenotrophomonas maltophilia is a plant growth-promoter. This bacterium is also implicated in human diseases. Thus, after the use of this bacterium in agriculture, the safety of the final products has to be verified. Due to the ubiquitous presence of S. maltophilia in soil, in this study a massive contamination was simulated to evaluate the growth and safety of Raphanus sativus L.. Results: Different inoculums and soil treatment conditions were tested. Soils were analysed weekly and the radishes at harvest for their microbial loads and presence/persistence of S. maltophilia LMG 6606. The concentration of the bacterium added in the different trials decreased during the first week, but increased thereafter and determined a significant increase of growth parameters of radishes. Conclusions: The addition of S. maltophilia LMG 6606 to non-autoclaved soil enhanced the productivity of radishes. The bacterium did not internalize in the hypocotyls, but colonized the external surface ensuring the safety of the products. Thus, a sanitizing bath of hypocotyls before consumption is necessary

    The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli

    Get PDF
    Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation

    Protein adsorption on preadsorbed polyampholytic monolayers

    Full text link
    The adsorption behaviour of five different globular proteins on pure silicon substrates and on preadsorbed polyampholytic monolayers has been investigated as a function of protein concentration. The prelayers were prepared by adsorption of the ampholytic diblock copolymer poly(methacrylic acid)-block-poly ((dimethylamino)ethyl methacrylate) (PMAA-b-PDMAEMA). This polyampholyte adsorbs in densely packed micelles directly from aqueous solution. Ellipsometry was used to determine the amount of adsorbed polyampholyte and protein. While ATR-IR spectroscopy gives information about the adsorption and desorption behaviour of the preadsorbed polyampholytic layer, the lateral structures of the dried films were investigated by scanning force microscopy (SFM). The amount of protein adsorbed was found to be strongly influenced by the preadsorbed polyampholyte compared to the adsorption on the pure silicon substrates. No displacement of the polyampholyte by the proteins was detected. In most cases the protein adsorption was reduced by the preadsorbed polyampholytic layer. The observed trends are explained by the change in electrostatic and hydrophilic characteristics of the substrates. Furthermore, the entropy of adsorption has to be taken into account.Peer reviewe

    Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    Full text link
    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.Comment: 25 pages, 7 figure

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Initiation of mRNA translation in bacteria: structural and dynamic aspects

    Get PDF

    Effectiveness of probiotics in the prevention of carious lesions during treatment with fixed orthodontic appliances.

    Full text link

    Agricultural uses of plant biostimulants

    Get PDF
    corecore