349 research outputs found

    Anatomical variation of a trifid (trifurcation) lateral root origin of the median nerve

    Get PDF
    Anatomic variations of the brachial plexus are common. Awareness of these variations is of paramount importance in clinical practice mainly in achieving best results in minimal invasive or surgical procedures. The aim of our study was to depict a case of a trifid lateral root origin of the medial nerve. This anatomical variation in the brachial plexus was encountered after dissection in upper extremities in a 90-year-old male cadaver

    Case series and a systematic review concerning the level of the aortic bifurcation

    Get PDF
    Background: The aim of this study is to present the level of aortic bifurcation in a sample of Greek origin (case series) and to perform an up-to-date systematic review in the existing literature. Materials and methods: Seventy-six formalin-fixed adult cadavers were dissected and studied in order to research the level of aortic bifurcation. Additionally, PubMed and Google Scholar databases were searched for eligible articles concerning the level of aortic bifurcation for the period up to February 2020. Results: The mean level of aortic bifurcation according to our case series was the lower third of the L4 vertebral body (21/76, 27.6%). The level of aortic bifurcation ranged between the lower third of the L3 vertebral body and the lower third of the L5 body. No statistically significant correlation was found between the two sexes. The systematic review of the literature revealed 31 articles which were considered eligible and a total number of 3537 specimens were retracted. According to the recorded findings the most common mean level of aortic bifurcation was the body of L4 vertebra (1495/3537 cases, 42.2%), while the range of aortic bifurcation was described to occur from upper third of L3 vertebrae to the upper third of the S1 vertebrae in the 52.8% of the cases (1866/3537). Conclusions: The mean level of AA corresponds to the body of L4 and presents a great range (form L3U to S1U). Knowledge of the mean level of aortic bifurcation and its probable ranges is of great significance for interventional radiologists and especially vascular surgeons that deal with aneurism proximal to the aortic bifurcation

    Weak chaos detection in the Fermi-Pasta-Ulam-α\alpha system using qq-Gaussian statistics

    Full text link
    We study numerically statistical distributions of sums of orbit coordinates, viewed as independent random variables in the spirit of the Central Limit Theorem, in weakly chaotic regimes associated with the excitation of the first (k=1k=1) and last (k=Nk=N) linear normal modes of the Fermi-Pasta-Ulam-α\alpha system under fixed boundary conditions. We show that at low energies (E=0.19E=0.19), when the k=1k=1 linear mode is excited, chaotic diffusion occurs characterized by distributions that are well approximated for long times (t>109t>10^9) by a qq-Gaussian Quasi-Stationary State (QSS) with q≈1.4q\approx1.4. On the other hand, when the k=Nk=N mode is excited at the same energy, diffusive phenomena are \textit{absent} and the motion is quasi-periodic. In fact, as the energy increases to E=0.3E=0.3, the distributions in the former case pass through \textit{shorter} qq-Gaussian states and tend rapidly to a Gaussian (i.e. q→1q\rightarrow 1) where equipartition sets in, while in the latter we need to reach to E=4 to see a \textit{sudden transition} to Gaussian statistics, without any passage through an intermediate QSS. This may be explained by different energy localization properties and recurrence phenomena in the two cases, supporting the view that when the energy is placed in the first mode weak chaos and "sticky" dynamics lead to a more gradual process of energy sharing, while strong chaos and equipartition appear abruptly when only the last mode is initially excited.Comment: 12 pages, 3 figures, submitted for publication to International Journal of Bifurcation and Chaos. In honor of Prof. Tassos Bountis' 60th birthda

    Interplay Between Chaotic and Regular Motion in a Time-Dependent Barred Galaxy Model

    Full text link
    We study the distinction and quantification of chaotic and regular motion in a time-dependent Hamiltonian barred galaxy model. Recently, a strong correlation was found between the strength of the bar and the presence of chaotic motion in this system, as models with relatively strong bars were shown to exhibit stronger chaotic behavior compared to those having a weaker bar component. Here, we attempt to further explore this connection by studying the interplay between chaotic and regular behavior of star orbits when the parameters of the model evolve in time. This happens for example when one introduces linear time dependence in the mass parameters of the model to mimic, in some general sense, the effect of self-consistent interactions of the actual N-body problem. We thus observe, in this simple time-dependent model also, that the increase of the bar's mass leads to an increase of the system's chaoticity. We propose a new way of using the Generalized Alignment Index (GALI) method as a reliable criterion to estimate the relative fraction of chaotic vs. regular orbits in such time-dependent potentials, which proves to be much more efficient than the computation of Lyapunov exponents. In particular, GALI is able to capture subtle changes in the nature of an orbit (or ensemble of orbits) even for relatively small time intervals, which makes it ideal for detecting dynamical transitions in time-dependent systems.Comment: 21 pages, 9 figures (minor typos fixed) to appear in J. Phys. A: Math. Theo

    solc-verify: A Modular Verifier for Solidity Smart Contracts

    Full text link
    We present solc-verify, a source-level verification tool for Ethereum smart contracts. Solc-verify takes smart contracts written in Solidity and discharges verification conditions using modular program analysis and SMT solvers. Built on top of the Solidity compiler, solc-verify reasons at the level of the contract source code, as opposed to the more common approaches that operate at the level of Ethereum bytecode. This enables solc-verify to effectively reason about high-level contract properties while modeling low-level language semantics precisely. The contract properties, such as contract invariants, loop invariants, and function pre- and post-conditions, can be provided as annotations in the code by the developer. This enables automated, yet user-friendly formal verification for smart contracts. We demonstrate solc-verify by examining real-world examples where our tool can effectively find bugs and prove correctness of non-trivial properties with minimal user effort.Comment: Authors' manuscript. Published in S. Chakraborty and J. A. Navas (Eds.): VSTTE 2019, LNCS 12031, 2020. The final publication is available at Springer via https://doi.org/10.1007/978-3-030-41600-3_1

    Production and transfer of energy and information in Hamiltonian systems

    Get PDF
    We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an ?experimental? implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented

    Genomic landscape of drug response reveals novel mediators of anthelmintic resistance

    Get PDF
    Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field
    • 

    corecore