328 research outputs found

    Multiomics reveal non-alcoholic fatty liver disease in rats following chronic exposure to an ultra-low dose of Roundup herbicide

    Get PDF
    The impairment of liver function by low environmentally relevant doses of glyphosate-based herbicides (GBH) is still a debatable and unresolved matter. Previously we have shown that rats administered for 2 years with 0.1 ppb (50 ng/L glyphosate equivalent dilution; 4 ng/kg body weight/day daily intake) of a Roundup GBH formulation showed signs of enhanced liver injury as indicated by anatomorphological, blood/urine biochemical changes and transcriptome profiling. Here we present a multiomic study combining metabolome and proteome liver analyses to obtain further insight into the Roundup-induced pathology. Proteins significantly disturbed (214 out of 1906 detected, q < 0.05) were involved in organonitrogen metabolism and fatty acid β-oxidation. Proteome disturbances reflected peroxisomal proliferation, steatosis and necrosis. The metabolome analysis (55 metabolites altered out of 673 detected, p < 0.05) confirmed lipotoxic conditions and oxidative stress by showing an activation of glutathione and ascorbate free radical scavenger systems. Additionally, we found metabolite alterations associated with hallmarks of hepatotoxicity such as γ-glutamyl dipeptides, acylcarnitines, and proline derivatives. Overall, metabolome and proteome disturbances showed a substantial overlap with biomarkers of non-alcoholic fatty liver disease and its progression to steatohepatosis and thus confirm liver functional dysfunction resulting from chronic ultra-low dose GBH exposure

    Effect of nitrogen-rich cell culture surfaces on type X collagen expression by bovine growth plate chondrocytes

    Get PDF
    Background: Recent evidence indicates that osteoarthritis (OA) may be a systemic disease since mesenchymal stem cells (MSCs) from OA patients express type X collagen, a marker of late stage chondrocyte hypertrophy (associated with endochondral ossification). We recently showed that the expression of type X collagen was suppressed when MSCs from OA patients were cultured on nitrogen (N)-rich plasma polymer layers, which we call "PPE:N" (N-doped plasma-polymerized ethylene, containing up to 36 atomic percentage (at.%) of N.Methods: In the present study, we examined the expression of type X collagen in fetal bovine growth plate chondrocytes (containing hypertrophic chondrocytes) cultured on PPE:N. We also studied the effect of PPE: N on the expression of matrix molecules such as type II collagen and aggrecan, as well as on proteases (matrix metalloproteinase-13 (MMP-13) and molecules implicated in cell division (cyclin B2). Two other culture surfaces, "hydrophilic" polystyrene (PS, regular culture dishes) and nitrogen-containing cation polystyrene (Primaria (R)), were also investigated for comparison.Results: Results showed that type X collagen mRNA levels were suppressed when cultured for 4 days on PPE: N, suggesting that type X collagen is regulated similarly in hypertrophic chondrocytes and in human MSCs from OA patients. However, the levels of type X collagen mRNA almost returned to control value after 20 days in culture on these surfaces. Culture on the various surfaces had no significant effects on type II collagen, aggrecan, MMP-13, and cyclin B2 mRNA levels.Conclusion: Hypertrophy is diminished by culturing growth plate chondrocytes on nitrogen-rich surfaces, a mechanism that is beneficial for MSC chondrogenesis. Furthermore, one major advantage of such "intelligent surfaces" over recombinant growth factors for tissue engineering and cartilage repair is potentially large cost-saving

    The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure Among Pregnant People in Southern Idaho, 2021

    Get PDF
    Background: Glyphosate is one of the most heavily used pesticides in the world, but little is known about sources of glyphosate exposure in pregnant people living in agricultural regions. Objective: Our objective was to evaluate glyphosate exposure during pregnancy in relation to residential proximity to agriculture as well as agricultural spray season. Methods: We quantified glyphosate concentrations in 453 urine samples collected biweekly from a cohort of 40 pregnant people in southern Idaho from February through December 2021. We estimated each participant’s glyphosate exposure as the geometric mean (GM) of glyphosate concentrations measured in all samples (average n = 11 samples/participant), as well as the GM of samples collected during the pesticide “spray season” (defined as those collected 1 May–15 August; average n = 5 samples/participant) and the “nonspray season” (defined as those collected before 1 May or after 15 August; average n = 6 samples/participant). We defined participants who resided \u3c 0.5 km from an actively cultivated agriculture field to live “near fields” and those residing ≥ 0.5 km from an agricultural field to live “far from fields” (n = 22 and 18, respectively). Results: Among participants living near fields, urinary glyphosate was detected more frequently and at significantly increased GM concentrations during the spray season in comparison with the nonspray season (81% vs. 55%; 0.228 μg/L vs. 0.150 μg/L, p \u3c 0.001). In contrast, among participants who lived far from fields, neither glyphosate detection frequency nor GMs differed in the spray vs nonspray season (66% vs. 64%; 0.154 μg/L vs. 0.165 μg/L, p = 0.45). Concentrations did not differ by residential proximity to fields during the nonspray season (0.154 μg/L vs. 0.165 μg/L, for near vs. far, p = 0.53). Discussion: Pregnant people living near agriculture fields had significantly increased urinary glyphosate concentrations during the agricultural spray season than during the nonspray season. They also had significantly higher urinary glyphosate concentrations during the spray season than those who lived far from agricultural fields at any time of year, but concentrations did not differ during the nonspray season. These findings suggest that agricultural glyphosate spray is a source of exposure for people living near fields

    Pirfenidone in idiopathic pulmonary fibrosis:expert panel discussion on the management of drug-related adverse events

    Get PDF
    Pirfenidone is currently the only approved therapy for idiopathic pulmonary fibrosis, following studies demonstrating that treatment reduces the decline in lung function and improves progression-free survival. Although generally well tolerated, a minority of patients discontinue therapy due to gastrointestinal and skin-related adverse events (AEs). This review summarizes recommendations based on existing guidelines, research evidence, and consensus opinions of expert authors, with the aim of providing practicing physicians with the specific clinical information needed to educate the patient and better manage pirfenidone-related AEs with continued pirfenidone treatment. The main recommendations to help prevent and/or mitigate gastrointestinal and skin-related AEs include taking pirfenidone during (or after) a meal, avoiding sun exposure, wearing protective clothing, and applying a broad-spectrum sunscreen with high ultraviolet (UV) A and UVB protection. These measures can help optimize AE management, which is key to maintaining patients on an optimal treatment dose.Correction in: Advances in Therapy, Volume 31, Issue 5, pp 575-576 , doi: 10.1007/s12325-014-0118-8</p

    Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement

    Get PDF
    Abstract The broad-spectrum herbicide glyphosate (common trade name &quot;Roundup&quot;) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds. Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization&apos;s International Agency for Research on Cancer recently concluded that glyphosate is &quot;probably carcinogenic to humans.&quot; In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards. We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National (Continued on next page
    corecore