7 research outputs found

    Proposed experiment for the quantum "Guess my number" protocol

    Get PDF
    An experimental realization of the entanglement-assisted "Guess my number" protocol for the reduction of communication complexity, introduced by Steane and van Dam, would require producing and detecting three-qubit GHZ states with an efficiency eta > 0.70, which would require single photon detectors of efficiency sigma > 0.89. We propose a modification of the protocol which can be translated into a real experiment using present-day technology. In the proposed experiment, the quantum reduction of the multi-party communication complexity would require an efficiency eta > 0.05, achievable with detectors of sigma > 0.47, for four parties, and eta > 0.17 (sigma > 0.55) for three parties.Comment: REVTeX4, 4 pages, 1 figur

    Compact set of invariants characterizing graph states of up to eight qubits

    Full text link
    The set of entanglement measures proposed by Hein, Eisert, and Briegel for n-qubit graph states [Phys. Rev. A 69, 062311 (2004)] fails to distinguish between inequivalent classes under local Clifford operations if n > 6. On the other hand, the set of invariants proposed by van den Nest, Dehaene, and De Moor (VDD) [Phys. Rev. A 72, 014307 (2005)] distinguishes between inequivalent classes, but contains too many invariants (more than 2 10^{36} for n=7) to be practical. Here we solve the problem of deciding which entanglement class a graph state of n < 9 qubits belongs to by calculating some of the state's intrinsic properties. We show that four invariants related to those proposed by VDD are enough for distinguishing between all inequivalent classes with n < 9 qubits.Comment: REVTeX4, 9 pages, 1 figur

    Experimental fully contextual correlations

    Get PDF
    Quantum correlations are contextual yet, in general, nothing prevents the existence of even more contextual correlations. We identify and test a noncontextuality inequality in which the quantum violation cannot be improved by any hypothetical postquantum theory, and use it to experimentally obtain correlations in which the fraction of noncontextual correlations is less than 0.06. Our correlations are experimentally generated from the results of sequential compatible tests on a four-state quantum system encoded in the polarization and path of a single photon.Comment: REVTeX4, 6 pages, 3 figure

    Entanglement in eight-qubit graph states

    Full text link
    Any 8-qubit graph state belongs to one of the 101 equivalence classes under local unitary operations within the Clifford group. For each of these classes we obtain a representative which requires the minimum number of controlled-Z gates for its preparation, and calculate the Schmidt measure for the 8-partite split, and the Schmidt ranks for all bipartite splits. This results into an extension to 8 qubits of the classification of graph states proposed by Hein, Eisert, and Briegel [Phys. Rev. A 69, 062311 (2004)].Comment: REVTeX4, 9 pages, 2 figure

    Optimal preparation of graph states

    Get PDF
    We show how to prepare any graph state of up to 12 qubits with: (a) the minimum number of controlled-Z gates, and (b) the minimum preparation depth. We assume only one-qubit and controlled-Z gates. The method exploits the fact that any graph state belongs to an equivalence class under local Clifford operations. We extend up to 12 qubits the classification of graph states according to their entanglement properties, and identify each class using only a reduced set of invariants. For any state, we provide a circuit with both properties (a) and (b), if it does exist, or, if it does not, one circuit with property (a) and one with property (b), including the explicit one-qubit gates needed
    corecore