17 research outputs found
Synthesis of azetidines and pyrrolidines: towards medicinal chemistry and organocatalysis applications
Room temperature iodocyclisation of homoallylamines stereoselectively delivers functionalised 2- (iodomethyl)azetidine derivatives in high yield. Increasing reaction temperature from 20 °C to 50 °C switches the reaction outcome to realise the stereoselective formation of functionalised 3-iodopyrrolidine derivatives. It was shown that these pyrrolidines are formed via thermal isomerisation of the aforementioned azetidines. Primary and secondary amines could be reacted with iodomethyl azetidine derivatives to deliver stable methylamino azetidine derivatives. With subtle changes to the reaction sequences homoallyl amines could be stereoselectively converted to either cis- or trans- substituted 3-amino pyrrolidine derivatives at will. The stereochemical divergent synthesis of cis and trans substituted pyrrolidines supports an ion part, aziridinium, isomerisation pathway for azetidine to pyrrolidine isomerisation. Six azetidine derivative were probed in a zebrafish embryo developmental assay for capacity to illicit morphological changes. The range of effects across the probed molecules demonstrates the suitability of this assay for screening azetidine derivatives. One of the probed molecules, rac-(((cis)-1-benzyl-4-phenylazetidin-2-yl)methyl)piperidine, exhibited particularly promising effects in the developmental assay
Recommended from our members
Self-immolative systems for the disclosure of reactive electrophilic alkylating agents
In this paper we report the design, synthesis and assessment of the first examples of self-immolative systems triggered by non-acidic electrophilic agents such as methyl, allyl or benzylic halides. These systems provide a visual colorimetric disclosure response upon exposure to these electrophilic reagents under mild, basic conditions without the need for the use of analytical instrumentation
Recommended from our members
A dynamic supramolecular polyurethane network whose mechanical properties are kinetically controlled
We report the synthesis and characterization of a kinetically controlled, thermoreversible supramolecular polyurethane whose mechanical properties depend unusually strongly on the processing history. Materials were prepared by solution casting, quenching and annealing of quenched material, allowing pronounced micro-structural evolution, which leads to rapid increases in modulus as determined by rheological analysis. Tensile tests showed that the quenched material is soft, weak and ductile (shear modulus ~ 5 MPa, elongation ~ 250 %), but after annealing, at 70 °C for one hour, it becomes stiffer, stronger and more brittle (~ 20 MPa, ~ 20 %). FTIR and NMR spectroscopic analysis, coupled with MDSC and SAXS, were performed to investigate the network’s dynamic structural changes. SAXS results suggest the presence of a lamellar structure in the sample when solution cast at high temperature, or annealed. This ordering is unique when compared to structurally-related supramolecular bisurethane and bisurea polymers, and may be the cause of the observed path dependence. These mechanical properties, which can be switched repeatedly by simple thermal treatments, coupled with its adhesion properties as determined from peel and tack tests, make it an excellent candidate as a recyclable material for adhesives and coatings
Recommended from our members
Effect of temperature and strain rate on the compressive behaviour of supramolecular polyurethane
Supramolecular polyurethanes (SPUs) possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics). A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10−3 to 104 s−1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs) for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested
Azetidines Kill Multidrug-Resistant <i>Mycobacterium tuberculosis</i> without Detectable Resistance by Blocking Mycolate Assembly
Tuberculosis (TB) is the leading cause of global morbidity and mortality resulting from infectious disease, with over 10.6 million new cases and 1.4 million deaths in 2021. This global emergency is exacerbated by the emergence of multidrug-resistant MDR-TB and extensively drug-resistant XDR-TB; therefore, new drugs and new drug targets are urgently required. From a whole cell phenotypic screen, a series of azetidines derivatives termed BGAz, which elicit potent bactericidal activity with MIC99 values <10 μM against drug-sensitive Mycobacterium tuberculosis and MDR-TB, were identified. These compounds demonstrate no detectable drug resistance. The mode of action and target deconvolution studies suggest that these compounds inhibit mycobacterial growth by interfering with cell envelope biogenesis, specifically late-stage mycolic acid biosynthesis. Transcriptomic analysis demonstrates that the BGAz compounds tested display a mode of action distinct from the existing mycobacterial cell wall inhibitors. In addition, the compounds tested exhibit toxicological and PK/PD profiles that pave the way for their development as antitubercular chemotherapies. </p
Palladium and platinum 2,4-cis-amino azetidine and related complexes
Crystal structures and structural interpretation of complexes of azetidine (and related) ligands coordinated to palladium(II) and platinum(II)
Rigid and concave, 2,4-cis-substituted azetidine derivatives: A platform for asymmetric catalysis
A series of single enantiomer, 2,4-cis-disubstituted amino azetidines were synthesised and used as ligands for copper-catalysed Henry reactions of aldehydes with nitromethane. Optimisation of ligand substituents and the reaction conditions was conducted. The enantiomeric excess of the formed products was highest when alkyl aldehydes were employed in the reaction (>99% e.e.). The absolute stereochemistry of one representative azetidine derivative salt was determined by analysis of the Flack parameter of an XRD single crystal structure. The origin of selectivity in catalysis was investigated computationally, revealing the importance of the amino-substituent in determining the stereochemical outcome. A racemic platinum complex of a cis-disubstituted azetidine is examined by XRD single crystal structure analysis with reference to its steric parameters, and analogies to the computationally determined copper complex catalyst are drawn.<br /
Rigid and concave, 2,4-cis-substituted azetidine derivatives: A platform for asymmetric catalysis
A series of single enantiomer, 2,4-<i>cis</i>-disubstituted amino azetidines were synthesised and used as ligands for copper-catalysed Henry reactions of aldehydes with nitromethane. Optimisation of ligand substituents and the reaction conditions was conducted. The enantiomeric excess of the formed products was highest when alkyl aldehydes were employed in the reaction (>99% e.e.). The absolute stereochemistry of one representative azetidine derivative salt was determined by analysis of the Flack parameter of an XRD single crystal structure. The origin of selectivity in catalysis was investigated computationally, revealing the importance of the amino-substituent in determining the stereochemical outcome. A racemic platinum complex of a <i>cis</i>-disubstituted azetidine is examined by XRD single crystal structure analysis with reference to its steric parameters, and analogies to the computationally determined copper complex catalyst are drawn.<br
Palladium and platinum 2,4-cis-amino azetidine and related complexes
Crystal structures and structural interpretation of complexes of azetidine (and related) ligands coordinated to palladium(II) and platinum(II)
Recommended from our members
A thermoreversible supramolecular polyurethane with excellent healing ability at 45 °C
We report the synthesis and characterization of a healable, elastomeric shape recovery supramolecular
polyurethane whose properties result from self-complementary π−π stacking and hydrogen bonding interactions plus phase separation. ESEM analysis and photographic images have revealed that this material can heal at 45 °C in 15 min to recover the mechanical properties of the pristine material with healing efficiencies >99%. This supramolecular polyurethane is also able to recover an applied strain of 25% within 5 min of release of the load