4 research outputs found

    Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    No full text
    none10Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. © 2013 Setten et al.noneSetten L.; Soto G.; Mozzicafreddo M.; Fox A.R.; Lisi C.; Cuccioloni M.; Angeletti M.; Pagano E.; Diaz-Paleo A.; Ayub N.D.Setten, L.; Soto, G.; Mozzicafreddo, M.; Fox, A. R.; Lisi, C.; Cuccioloni, M.; Angeletti, M.; Pagano, E.; Diaz-Paleo, A.; Ayub, N. D

    Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    Get PDF
    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops

    Stress-induced expression of IPT gene in transgenic wheat reduces grain yield penalty under drought.

    Get PDF
    BackgroundThe heterologous expression of isopentenyl transferase (IPT) under the transcriptional control of the senescence-associated receptor-like kinase (SARK) promoter delayed cellular senescence and, through it, increased drought tolerance in plants. To evaluate the effect of pSARK::IPT expression in bread wheat, six independent transgenic events were obtained through the biolistic method and evaluated transgene expression, phenology, grain yield and physiological biomass components in plants grown under both drought and well-irrigating conditions. Experiments were performed at different levels: (i) pots and (ii) microplots inside a biosafety greenhouse, as well as under (iii) field conditions.ResultsTwo transgenic events, called TR1 and TR4, outperformed the wild-type control under drought conditions. Transgenic plants showed higher yield under both greenhouse and field conditions, which was positively correlated to grain number (given by more spikes and grains per spike) than wild type. Interestingly, this yield advantage of the transgenic events was observed under both drought and well-watered conditions.ConclusionsThe results obtained allow us to conclude that the SARK promoter-regulated expression of the IPT gene in bread wheat not only reduced the yield penalty produced by water stress but also led to improved productivity under well-watered conditions
    corecore