248 research outputs found

    Precursor phenomena in frustrated systems

    Get PDF
    To understand the origin of the dynamical transition, between high temperature exponential relaxation and low temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in presence of disorder) or fully frustrated Ising (in absence of disorder), and the higher being a Potts transition. Monte Carlo results clarify that in the model with (or without) disorder the precursor phenomena are related to the Griffiths (or Potts) transition. The Griffiths transition is a vanishing transition which occurs above the Potts transition and is present only when disorder is present, while the Potts transition which signals the effect due to frustration is always present. These results suggest that precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin systems case.Comment: Completely rewritten. New data. New result

    Lamellar order, microphase structures and glassy phase in a field theoretic model for charged colloids

    Full text link
    In this paper we present a detailed analytical study of the phase diagram and of the structural properties of a field theoretic model with a short-range attraction and a competing long-range screened repulsion. We provide a full derivation and expanded discussion and digression on results previously reported briefly in M. Tarzia and A. Coniglio, Phys. Rev. Lett. 96, 075702 (2006). The model contains the essential features of the effective interaction potential among charged colloids in polymeric solutions. We employ the self-consistent Hartree approximation and a replica approach, and we show that varying the parameters of the repulsive potential and the temperature yields a phase coexistence, a lamellar and a glassy phase. Our results suggest that the cluster phase observed in charged colloids might be the signature of an underlying equilibrium lamellar phase, hidden on experimental time scales, and emphasize that the formation of microphase structures may play a prominent role in the process of colloidal gelation.Comment: 16 pages, 7 figure

    Scaling and universality in glass transition

    Get PDF
    Kinetic facilitated models and the Mode Coupling Theory (MCT) model B are within those systems known to exhibit a discontinuous dynamical transition with a two step relaxation. We consider a general scaling approach, within mean field theory, for such systems by considering the behavior of the density correlator and the dynamical susceptibility -^2. Focusing on the Fredrickson and Andersen (FA) facilitated spin model on the Bethe lattice, we extend a cluster approach that was previously developed for continuous glass transitions by Arenzon et al (Phys. Rev. E 90, 020301(R) (2014)) to describe the decay to the plateau, and consider a damage spreading mechanism to describe the departure from the plateau. We predict scaling laws, which relate dynamical exponents to the static exponents of mean field bootstrap percolation. The dynamical behavior and the scaling laws for both density correlator and dynamical susceptibility coincide with those predicted by MCT. These results explain the origin of scaling laws and the universal behavior associated with the glass transition in mean field, which is characterized by the divergence of the static length of the bootstrap percolation model with an upper critical dimension d_c=8.Comment: 16 pages, 9 figure

    Disordered jammed packings of frictionless spheres

    Full text link
    At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct numerical construction of disordered jammed states with a volume fraction varying between two limits, 0.6360.636 and 0.6460.646. We identify these limits with the random loose packing volume fraction \rl and the random close packing volume fraction \rc of frictionless spheres, respectively

    Segregation in hard spheres mixtures under gravity. An extension of Edwards approach with two thermodynamical parameters

    Full text link
    We study segregation patterns in a hard sphere binary model under gravity subject to sequences of taps. We discuss the appearance of the ``Brazil nut'' effect (where large particles move up) and the ``reverse Brazil nut'' effects in the stationary states reached by ``tap'' dynamics. In particular, we show that the stationary state depends only on two thermodynamical quantities: the gravitational energy of the first and of the second species and not on the sample history. To describe the properties of the system, we generalize Edwards' approach by introducing a canonical distribution characterized by two configurational temperatures, conjugate to the energies of the two species. This is supported by Monte Carlo calculations showing that the average of several quantities over the tap dynamics and over such distribution coincide. The segregation problem can then be understood as an equilibrium statistical mechanics problem with two control parameters.Comment: 7 pages, 4 figure

    Crossover properties from random percolation to frustrated percolation

    Full text link
    We investigate the crossover properties of the frustrated percolation model on a two-dimensional square lattice, with asymmetric distribution of ferromagnetic and antiferromagnetic interactions. We determine the critical exponents nu, gamma and beta of the percolation transition of the model, for various values of the density of antiferromagnetic interactions pi in the range 0<pi<0.5. Our data are consistent with the existence of a crossover from random percolation behavior for pi=0, to frustrated percolation behavior, characterized by the critical exponents of the ferromagnetic 1/2-state Potts model, as soon as pi>0.Comment: 5 pages, 7 figs, RevTe

    Spatial correlations of elementary relaxation events in glass-forming liquids

    Get PDF
    The dynamical facilitation scenario, by which localized relaxation events promote nearby relaxation events in an avalanching process, has been suggested as the key mechanism connecting the microscopic and the macroscopic dynamics of structural glasses. Here we investigate the statistical features of this process via the numerical simulation of a model structural glass. First we show that the relaxation dynamics of the system occurs through particle jumps that are irreversible, and that cannot be decomposed in smaller irreversible events. Then we show that each jump does actually trigger an avalanche. The characteristic of this avalanche change on cooling, suggesting that the relaxation dynamics crossovers from a noise dominated regime where jumps do not trigger other relaxation events, to a regime dominated by the facilitation process, where a jump trigger more relaxation events.Comment: 8 pages, 6 figure
    • …
    corecore