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Spatial correlations of elementary relaxation events in glass–forming liquids
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Abstract

The dynamical facilitation scenario, by which localized relaxation events promote nearby relaxation events
in an avalanching process, has been suggested as the key mechanism connecting the microscopic and the
macroscopic dynamics of structural glasses. Here we investigate the statistical features of this process via the
numerical simulation of a model structural glass. First we show that the relaxation dynamics of the system
occurs through particle jumps that are irreversible, and that cannot be decomposed in smaller irreversible
events. Then we show that each jump does actually trigger an avalanche. The characteristic of this avalanche
change on cooling, suggesting that the relaxation dynamics crossovers from a noise dominated regime where
jumps do not trigger other relaxation events, to a regime dominated by the facilitation process, where a jump
trigger more relaxation events.
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1 Introduction

Structural glasses, which are amorphous solids ob-
tained by cooling liquids below their melting tem-
perature avoiding crystallization, provide an array
of questions that has been challenging researchers
in the last decades1;2;3. These include the nature
of the glass transition, the origin of the extraordi-
narily sensitivity of the relaxation time on temper-
ature, the Boson-peak, the relaxation dynamics. In
this respect, here we consider that there is not yet
an established connection between the short time
single particle motion, and the overall macroscopic
dynamics. When observed at the scale of a sin-
gle particle, the motion of structural glasses is well
known to be intermittent. This is commonly ratio-
nalized considering each particle to rattle in the cage
formed by its neighbors, until it jumps to a different
cage4. Conversely, when the motion is observed at
the macroscale, a spatio-temporal correlated dynam-
ics emerges5. Dynamical facilitation6;7;8, by which
a local relaxation event facilitates the occurrence
of relaxation events in its proximity, has been sug-
gested as a key mechanism connecting the micro-
scopic and the macroscopic dynamics. Indeed, kinet-
ically constrained lattice model9, which provide the
conceptual framework of the dynamical facilitation
scenario, reproduce much of the glassy phenomenol-
ogy and are at the basis of a purely dynamical inter-
pretation of the glass transition. Different numeri-
cal approaches have tried to identify irreversible re-
laxation events 10;11;12;13;14;15;16;17;18;19;20, and both
numerical21;22 and experimental works23;24 revealed
signatures of a dynamical facilitation scenario.

Here we provide novel insights into the dynamical
facilitation mechanisms through the numerical inves-
tigation of a model glass former. We show that it is
possible to identify single particle jumps that are el-

ementary relaxations, being short-lasting irreversible
events that cannot be decomposed in a sequence
of smaller irreversible events. We then clarify that
these jumps lead to spatio-temporal correlations as
each jump triggers subsequent jumps in an avalanch-

ing process. The statistical features of the avalanches
changes on cooling. Around the temperature where
the Stokes-Einstein relation first breaks down, the
dynamics shows a crossover from a high tempera-
ture regime, in which the avalanches do not spread
and the dynamics is dominated by thermal noise, to
a low temperature regime, where the avalanches per-
colate. These results suggest to interpret dynamical
facilitation as a spreading process25, and might open
the way to the developing of dynamical probabilistic
models to describe the relaxation of glass formers.

2 Methods

We have performed NVT molecular dynamics sim-
ulations26 of a two-dimensional 50:50 binary mix-
ture of 2N = 103 of disks, with a diameter ratio
σL/σS = 1.4, known to inhibit crystallization, at
a fixed area fraction φ = 1 in a box of side L.
Particles interact via an soft potential27, V (rij) =
ǫ ((σij − rij)/σL)

α Θ(σij − rij), with α = 2 (Har-
monic). Here rij is the interparticle separation and
σij the average diameter of the interacting parti-
cles. This interaction and its variants (character-
ized by different values of α) are largely used to
model dense colloidal systems, such as foams28, mi-
crogels29 and glasses30;31. Units are reduced so that
σL = m = ǫ = kB = 1, where m is the mass of both
particle species and kB the Boltzmann’s constant.
The two species behave in a qualitatively analogous
way, and all data presented here refer to the smallest
component.
Cage–jump detection algorithm. We segment the tra-
jectory of each particle in a series of cages interrupted
by jumps using the algorithm of Ref.32, following
earlier approaches11. Briefly, we consider that, on a
timescale δ of few particle collisions, the fluctuation
S2(t) of a caged particle position is of the order of
the Debye–Waller factor (DWF) 〈u2〉. By compar-
ing S2(t) with 〈u2〉 we therefore consider a particle
as caged if S2(t) < 〈u2〉, and as jumping otherwise.
Practically, we compute S2(t) as 〈(r(t)− 〈r(t)〉δ)

2〉δ ,
where the averages are computed in the time interval
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[t − δ : t + δ], with δ ≃ 10tb, and tb is the ballistic
time. At each temperature DWF is defined accord-
ing to Ref.33, 〈u2〉 = 〈r2(tDW )〉, where tDW is the
time of minimal diffusivity of the system, i.e. the
time at which the derivative of log〈r2(t)〉 with re-
spect to log(t) is minimal. At each instant the al-
gorithm allows to identify the jumping particles and
the caged ones. We stress that in this approach a
jump is a process with a finite duration. Indeed, by
monitoring when S2 equals 〈u2〉, we are able to iden-
tify the time at which each jump (or cage) starts and
ends. We thus have access to the time, tp, a parti-
cle persists in its cage before making the first after
an arbitrary chosen t = 0 (persistence time), to the
waiting time between subsequent jump of the same
particle tw (cage duration), and to the duration ∆tj
and the length ∆rJ of each jump.

3 Results

3.1 Jumps as irreversible elementary pro-

cesses

The idea of describing the relaxation of structural
glasses as consisting of a sequence of irreversible
processes is not new, and different approaches have
been followed to identify these events. For instance,
irreversible events have been associated to change
of neighbors13;14;15, to displacements overcoming a
threshold in a fixed time laps22, to processes iden-
tified through clustering algorithm applied to the
particle trajectories21;23, or to more sophisticated
approaches17. We notice that since at long time
particles move diffusively, all procedures that coarse
grains the particle trajectory enough will eventually
identify irreversible events. Here we show that the
jumps we have identified are irreversible, and we give
evidence suggesting that these can be considered as
‘elementary’ irreversible events, i.e that they are the
smallest irreversible single–particle move, at least in
the range of parameters we have investigated.

Investigating both the model considered here32,
as well as the 3d Kob-Andersen Lennard-Jones (3d
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Figure 1: Average persistence time, 〈tp〉, cage du-
ration, 〈tw〉 and jump duration, 〈∆tJ〉, as a func-
tion of the temperature. 〈tw〉 grows as an Arrhe-
nius 〈tw〉 ∝ exp (A/T ) (red full line), whereas 〈tp〉 is
compatible with several super–Arrhenius laws. The
black full line is, for example, a fit 〈tp〉 ∝ exp

(

A/T 2
)

,
while the black dashed line is a Vogel–Fulcher law
〈tp〉 ∝ exp (B/(T − T0)), predicting a divergence at
a finite temperature T0 ≃ 0.001. The arrow indicates
the temperature Tx = 0.002 where 〈tp〉 and 〈tw〉 de-
couple and the SE relation breaks down. Conversely,
〈∆tJ〉 remains roughly constant on cooling.

KA LJ) binary mixture34 and experimental colloidal
glass35, we have previously shown that the protocol
defined in Sec. 2 leads to the identification of irre-
versible events. Indeed, the mean square displace-
ment of the particles increases linearly with the num-
ber of jumps, allowing to describe the dynamics as a
continuous time random walk (CTRW)36.

Within this approach two fundamental timescales
are found, the average persistence time 〈tp〉 and the
average cage duration 〈tw〉. The former corresponds
to the relaxation time at the wavelength of the order
of the jump length 〈∆rJ〉, while the latter is related
to the self diffusion constant, D ∝ 〈∆r2J〉/〈tw〉. Fig.1
shows that the two timescales are equal at high tem-
perature, but decouple at a temperature Tx ≃ 0.002,
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Figure 2: Mean squared jump length 〈∆r2J〉 as a func-
tion of the jump duration ∆tJ at different tempera-
tures.

which marks the onset of the Stokes-Einstein (SE)
breakdown at the wavelength of the jump length. We
find that 〈tw〉 shows an Arrhenius temperature de-
pendence 〈tw〉 ∝ exp (A/T ), while 〈tp〉 increases with
a faster super–Arrhenius behaviour (see the caption
of Fig.1). It is worth noticing that the decoupling
between the average persistence and waiting time, is
known to control the breakdown of the SE relation
at generic wavelengths, and to induce temporal het-
erogeneities37;34. These findings suggest that Tx may
represent a crossover from a localized to a more cor-
related relaxation process. A similar scenario has
been recently reported for models of atomic glass
forming liquids, where the SE breaks down and the
size of dynamics heterogeneities markedly accelerates
below a well defined value of Tx.

38

We performed two investigations supporting the
elementary nature of the jumps we have identified.
First, we have considered the change of the average
jump duration 〈∆tJ〉 on cooling, as the duration of
elementary relaxations is expected not to grow with
the relaxation time. Fig. 1 shows that the 〈∆tJ〉
is essentially constant, despite the relaxation time
〈tp〉 varying by order of magnitudes. Indeed, at low
temperature 〈tp〉/〈∆tJ 〉 ≫ 1, clarifying why we call
them ‘jumps’. Then we have considered how parti-
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Figure 3: Excess probability to observe contempo-
rary jumps, CJ(r, 0), as function of the distance and
at different temperature, as indicated. The dashed
line is a guide to the eyes ∝ exp(−1.35/r).

cles move while making a jump. Fig. 2 illustrates
that the mean squared jump length grows subdif-
fusively as a function of the jump duration, with
a subdiffusive exponent that decreases on cooling.
Conversely, one would expect a diffusive behaviour
if jumps were decomposable in a series of irreversible
steps.

These results supports the identification of the
jumps we have defined with the elementary relax-
ations leading to the macroscopic relaxation of the
particle system.

3.2 Correlations between jumps

While each particle behaves as a random walker as
it performs subsequent jumps, yet jumps of differ-
ent particles could be spatially and temporally corre-
lated. We investigate these correlations focusing on
the properties of a jump birth scalar field, defined as

b(r, t) =
1

N

N
∑

i

bi(t)δ(r − ri(t)). (1)

Here bi(t) = 1 if particle i starts a jump between t
and t+δt, where δt is our temporal resolution, bi(t) =
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0 otherwise. The scalar field b allows to investigate
the statistical features of the facilitation process by
which a jump triggers subsequent ones. To this end,
we indicate with 〈b(r, t)〉b(0,0)=1 the probability that
a jump starts in (t, r) given a jump in (t = 0, r = 0),
and investigate the correlation function

CJ(r, t) =

[

〈b(r, t)〉b(0,0)=1 − 〈b〉

g(r, t)

]

. (2)

Here g(r, t) is a time dependent generalization of the
radial distribution function

g(r, t)dr =
1

2πrρ(N − 1)

∑

i 6=j

δ(r − |rj(t)− ri(0)|),

(3)
through which we avoid the appearance of spurious
oscillations in the correlation function CJ(r, t) due
to the short range ordering of the system. In Eq.2,
〈b〉 is the spatio-temporal average of the jump birth,
and decreases on cooling as 〈b〉 = (〈tw〉 + 〈∆tJ〉)

−1

(at low temperature 〈b〉 ≃ 〈tw〉
−1 as 〈tw〉 << 〈∆tJ〉).

Accordingly, the correlation function CJ(r, t) is the
probability that a jump triggers a subsequent one at
a distance r after a time t.

We first consider the spatial correlations between
contemporary jumps, where two jumps are consid-
ered contemporary if occurring within our tempo-
ral resolution. Fig. 3 shows that CJ(r, 0) decays ex-
ponentially, with a temperature independent corre-
lation length ξJ(0, T ) ≃ 1.35. This result clarifies
that jumps aggregate in cluster of roughly Ncorr ≃
ρπξ2J(0) ≃ 5 events. A similar scenario has been ob-
served in a different model system, where jumps have
been observed to aggregate in clusters of roughly 7.6
particles21. Our results also support previous find-
ings suggesting22 that the elementary excitations of
structural glasses have a temperature-independent
length not larger than few particle diameters and are
consistent with a recently introduced first principle
extension of the Mode Coupling Theory39. The in-
vestigation of the displacements of the particle jump-
ing in each cluster does not reveal characteristic spa-
tial features. Structured particle motion, such as
string-like particle displacements40 or displacements
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Figure 4: Evolution of the spatial correlation be-
tween jumps with time. Each panel refer to a
different temperature, as indicated. Within each
panel, the different curves correspond to t =
0, 10, 20, 30, 100, 500, 103 and 105, from top to bot-
tom. At high temperature data corresponding to
the largest times are missing as the correlation is
too small to be measured.

reminiscent of T1 events41 must therefore result from
a succession of events rather than a single one.

We now consider the time evolution of the spatial
correlation between jumps. Fig. 4 illustrates that
at all temperatures and times the decay of the cor-
relation function is compatible with an exponential,
CJ(r, t) ∝ A(t) exp(−r/ξJ(t)). The time dependence
of the amplitude is illustrated in Fig. 5. At all tem-
peratures the short time decay of the amplitude is
exponential, A(t, T ) = A(0, T ) exp(−t/τA(T )), the
characteristic decay time slightly increasing on cool-
ing. While no other decay is observed at high tem-
peratures, at low temperatures the exponential decay
crossovers towards a much slower power-law decay
A(t) ∼ t−a, with a ≃ 0.4. Fig. 6 shows that the cor-
relation length slowly grows in time, approximately
as ξJ(t) ∼ tb, with b ≃ 0.1.

The initial fast decrease of the amplitude makes
difficult to obtain reliable estimates of its time de-
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Figure 5: Panel a shows that the amplitude A(t) of
the jump correlation function CJ(r, t). Panels b and
c clarify that a first exponential decay is followed,
at low temperature, by a second one, which approx-
imately follows a power law.

10
1

10
2

10
3

10
4

10
5

10
6

t

1

10

ξ
J

T=1.7 10
-3

T=1.8 10
-3

T=1.9 10
-3

T=2.0 10
-3

T=2.2 10
-3

T=2.5 10
-3

t
0.1

Figure 6: Time dependence of the jump correlation
length, at different temperatures. The data suggest
that at low temperature the correlation length slowly
grows in time, as ξJ(T ) ∝ t0.1.

pendence and correlation length, despite intense
computational efforts. Nevertheless, our data
clearly show the reported exponential to power–law
crossover in the decay of the amplitude of CJ(r, t).

The highest temperature at which this decay ex-
hibits a power law tail, is consistent with the tem-
perature Tx where 〈tw〉 and 〈tp〉 first decouple, and
the SE relation breaks down (see Sec.3.1). This
suggests that the breakdown of the SE relation is
related to a crossover in the features of the facil-
itation process. We investigate this crossover fo-
cussing on the number of jumps triggered by a given
jump. This is given by Ntr(T ) ∝

∫∞

0 n(t, T )dt,
where n(t, T ) =

∫

C(r, t)rdr ∝ A(t, T )ξ2(t, T )dt,
is the number of jumps it triggers at time t. As
at high temperature the variation of the correlation
length is small with respect to that of the ampli-
tude, one can assume ξ(t, T ) ≃ ξ(0, T ) and esti-
mate Ntr(T ) ∝ A(0, T )ξ2(0, T )τA(T ). At low tem-
perature, the integral is dominated by the long time
power law behavior of the amplitude and of the cor-
relation length, and the number of triggered events
diverges as Ntr(T, t) ∝

∫ t

0 A(t)ξ
2(t)dt ∝ t−a+2b+1 ∝

t0.8.

4 Discussion

We conclude by noticing that the above scenario sug-
gests to interpret facilitation as an infection spread-
ing process, in which a particle is infected each
time it jumps. Since each particle can be infected
more than once, the relevant infection model is of
susceptible-infected-susceptible (SIS) type. In this
framework, the exponential to power–law crossover
in the decay of the amplitude of CJ(r, t) signals a
transition from a high temperature resilient regime,
in which a single infected site only triggers a finite
number of infections, to a low temperature regime
in which the number of triggered infection diverges.
A complementary interpretation can be inspired by
the diffusing defect paradigm42;1. We suggest that
the correlation length of contemporary jumps, ξJ(0),
is akin to the typical defect size, which, according to
our results, is temperature independent. In the high
temperature regime, this is the only relevant corre-
lation length, as defects are rapidly created and de-
stroyed by noisy random fluctuations, before they
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can sensibly diffuse. At low temperature, the ef-
fect of noise becomes smaller: the short time cor-
relation length is still dominated by the defect size,
ξJ(t < τA) ≃ ξJ(0), whereas its long time behaviour,
ξJ(t >> τA), is controlled by the typical distance
defects have moved up to time t. Further studies are
necessary to investigate which of the two interpreta-
tions is more appropriate.
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