41 research outputs found

    Glioma Stem Cells as Promoter of Glioma Progression: A Systematic Review of Molecular Pathways and Targeted Therapies

    Get PDF
    Gliomas' aggressive nature and resistance to therapy make them a major problem in oncology. Gliomas continue to have dismal prognoses despite significant advancements in medical science, and traditional treatments like surgery, radiation (RT), and chemotherapy (CT) frequently prove to be ineffective. After glioma stem cells (GSCs) were discovered, the traditional view of gliomas as homogeneous masses changed. GSCs are essential for tumor growth, treatment resistance, and recurrence. These cells' distinct capacities for differentiation and self-renewal are changing our knowledge of the biology of gliomas. This systematic literature review aims to uncover the molecular mechanisms driving glioma progression associated with GSCs. The systematic review adhered to PRISMA guidelines, with a thorough literature search conducted on PubMed, Ovid MED-LINE, and Ovid EMBASE. The first literature search was performed on 1 March 2024, and the search was updated on 15 May 2024. Employing MeSH terms and Boolean operators, the search focused on molecular mechanisms associated with GCSs-mediated glioma progression. Inclusion criteria encompassed English language studies, preclinical studies, and clinical trials. A number of 957 papers were initially identified, of which 65 studies spanning from 2005 to 2024 were finally included in the review. The main GSC model distribution is arranged in decreasing order of frequency: U87: 20 studies (32.0%); U251: 13 studies (20.0%); A172: 4 studies (6.2%); and T98G: 2 studies (3.17%). From most to least frequent, the distribution of the primary GSC pathway is as follows: Notch: 8 studies (12.3%); STAT3: 6 studies (9.2%); Wnt/β-catenin: 6 studies (9.2%); HIF: 5 studies (7.7%); and PI3K/AKT: 4 studies (6.2%). The distribution of molecular effects, from most to least common, is as follows: inhibition of differentiation: 22 studies (33.8%); increased proliferation: 18 studies (27.7%); enhanced invasive ability: 15 studies (23.1%); increased self-renewal: 5 studies (7.7%); and inhibition of apoptosis: 3 studies (4.6%). This work highlights GSC heterogeneity and the dynamic interplay within the glioblastoma microenvironment, underscoring the need for a tailored approach. A few key pathways influencing GSC behavior are JAK/STAT3, PI3K/AKT, Wnt/β-catenin, and Notch. Therapy may target these pathways. This research urges more study to fill in knowledge gaps in the biology of GSCs and translate findings into useful treatment approaches that could improve GBM patient outcomes

    Advancing the Management of Skull Base Chondrosarcomas: A Systematic Review of Targeted Therapies

    Get PDF
    Background: Chondrosarcomas rank as the second most common primary bone malignancy. Characterized by the production of a cartilaginous matrix, these tumors typically exhibit resistance to both radiotherapy (RT) and chemotherapy (CT), resulting in overall poor outcomes: a high rate of mortality, especially among children and adolescents. Due to the considerable resistance to current conventional therapies such as surgery, CT, and RT, there is an urgent need to identify factors contributing to resistance and discover new strategies for optimal treatment. Over the past decade, researchers have delved into the dysregulation of genes associated with tumor development and therapy resistance to identify potential therapeutic targets for overcoming resistance. Recent studies have suggested several promising biomarkers and therapeutic targets for chondrosarcoma, including isocitrate dehydrogenase (IDH1/2) and COL2A1. Molecule-targeting agents and immunotherapies have demonstrated favorable antitumor activity in clinical studies involving patients with advanced chondrosarcomas. In this systematic review, we delineate the clinical features of chondrosarcoma and provide a summary of gene dysregulation and mutation associated with tumor development, as well as targeted therapies as a promising molecular approach. Finally, we analyze the probable role of the tumor microenvironment in chondrosarcoma drug resistance. Methods: A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 10 November 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "chondrosarcomas", "target therapies", "immunotherapies", and "outcomes". The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of target therapies for the treatment of chondrosarcoma in human subjects. Results: Of the initial 279 articles identified, 40 articles were included in the article. The exclusion of 140 articles was due to reasons such as irrelevance, non-reporting of selected results, systematic literature review or meta-analysis, and lack of details on the method/results. Three tables highlighted clinical studies, preclinical studies, and ongoing clinical trials, encompassing 13, 7, and 20 studies, respectively. For the clinical study, a range of molecular targets, such as death receptors 4/5 (DR4 and DR5) (15%), platelet-derived growth factor receptor-alpha or -beta (PDGFR-alpha, PDGFR-beta) (31%), were investigated. Adverse events were mainly constitutional symptoms emphasizing that to improve therapy tolerance, careful observation and tailored management are essential. Preclinical studies analyzed various molecular targets such as DR4/5 (28.6%) and COX-2 (28.6%). The prevalent indicator of antitumoral activity was the apoptotic rate of both a single agent (tumor necrosis factor-related apoptosis-inducing ligand: TRAIL) and double agents (TRAIL-DOX, TRAIL-MG132). Ongoing clinical trials, the majority in Phase II (53.9%), highlighted possible therapeutic strategies such as IDH1 inhibitors and PD-1/PD-L1 inhibitors (30.8%). Conclusions: The present review offers a comprehensive analysis of targeted therapeutics for skull base chondrosarcomas, highlighting a complex landscape characterized by a range of treatment approaches and new opportunities for tailored interventions.The combination of results from molecular research and clinical trials emphasizes the necessity for specialized treatment strategies and the complexity of chondrosarcoma biology

    CAR-T Cells Therapy in Glioblastoma: A Systematic Review on Molecular Targets and Treatment Strategies

    Get PDF
    The most common primary brain tumor is glioblastoma (GBM), yet the current therapeutic options for this disease are not promising. Although immunotherapeutic techniques have shown poor success in GBM thus far despite efforts, new developments provide optimism. One of these developments is chimeric antigen receptor (CAR)-T cell treatment, which includes removing and genetically modifying autologous T cells to produce a receptor that targets a GBM antigen before reintroducing the cells into the patient's body. A number of preclinical studies have produced encouraging results, which have led to the start of clinical trials assessing these CAR-T cell treatments for GBM and other brain tumors. Although results in tumors such as diffuse intrinsic pontine gliomas and lymphomas have been promising, preliminary findings in GBM have not produced any clinical benefits. The paucity of particular antigens in GBM, their inconsistent expression patterns, and the possible immunoediting-induced loss of these antigens after antigen-targeted therapy are some possible causes for this discrepancy. The goal of this systematic literature review is to assess potential approaches for creating CAR-T cells that are more effective for this indication, as well as the clinical experiences that are already being had with CAR-T cell therapy in GBM. Up until 9 May 2024, a thorough search was carried out across the three main medical databases: PubMed, Web of Science, and Scopus. Relevant Medical Subject Heading (MeSH) terms and keywords associated with "glioblastoma", "CAR-T", "T cell therapy", "overall survival", and "progression free survival" were employed in the search approach. Preclinical and clinical research on the application of CAR-T cells as a therapeutic approach for GBM are included in the review. A total of 838 papers were identified. Of these, 379 articles were assessed for eligibility, resulting in 8 articles meeting the inclusion criteria. The included studies were conducted between 2015 and 2023, with a total of 151 patients enrolled. The studies varied in CAR-T cell types. EGFRvIII CAR-T cells were the most frequently investigated, used in three studies (37.5%). Intravenous delivery was the most common method of delivery (62.5%). Median OS ranged from 5.5 to 11.1 months across the studies. PFS was reported in only two studies, with values of 7.5 months and 1.3 months. This systematic review highlights the evolving research on CAR-T cell therapy for GBM, emphasizing its potential despite challenges. Targeting antigens like EGFRvIII and IL13R alpha 2 shows promise in treating recurrent GBM. However, issues such as antigen escape, tumor heterogeneity, and immunosuppression require further optimization. Innovative delivery methods, combination therapies, and personalized approaches are crucial for enhancing CAR-T cell efficacy. Ongoing research is essential to refine these therapies and improve outcomes for GBM patients

    Advancing Craniopharyngioma Management: A Systematic Review of Current Targeted Therapies and Future Perspectives

    Get PDF
    Craniopharyngiomas present unique challenges in surgical management due to their proximity to critical neurovascular structures. This systematic review investigates genetic and immunological markers as potential targets for therapy in craniopharyngiomas, assessing their involvement in tumorigenesis, and their influence on prognosis and treatment strategies. The systematic review adhered to PRISMA guidelines, with a thorough literature search conducted on PubMed, Ovid MED-LINE, and Ovid EMBASE. Employing MeSH terms and Boolean operators, the search focused on craniopharyngiomas, targeted or molecular therapy, and clinical outcomes or adverse events. Inclusion criteria encompassed English language studies, clinical trials (randomized or non-randomized), and investigations into adamantinomatous or papillary craniopharyngiomas. Targeted therapies, either standalone or combined with chemotherapy and/or radiotherapy, were examined if they included clinical outcomes or adverse event analysis. Primary outcomes assessed disease response through follow-up MRI scans, categorizing responses as follows: complete response (CR), near-complete response (NCR), partial response, and stable or progressive disease based on lesion regression percentages. Secondary outcomes included treatment type and duration, as well as adverse events. A total of 891 papers were initially identified, of which 26 studies spanning from 2000 to 2023 were finally included in the review. Two tables highlighted adamantinomatous and papillary craniopharyngiomas, encompassing 7 and 19 studies, respectively. For adamantinomatous craniopharyngiomas, Interferon-2α was the predominant targeted therapy (29%), whereas dabrafenib took precedence (70%) for papillary craniopharyngiomas. Treatment durations varied, ranging from 1.7 to 28 months. Positive responses, including CR or NCR, were observed in both types of craniopharyngiomas (29% CR for adamantinomatous; 32% CR for papillary). Adverse events, such as constitutional symptoms and skin changes, were reported, emphasizing the need for vigilant monitoring and personalized management to enhance treatment tolerability. Overall, the data highlighted a diverse landscape of targeted therapies with encouraging responses and manageable adverse events, underscoring the importance of ongoing research and individualized patient care in the exploration of treatment options for craniopharyngiomas. In the realm of targeted therapies for craniopharyngiomas, tocilizumab and dabrafenib emerged as prominent choices for adamantinomatous and papillary cases, respectively. While adverse events were common, their manageable nature underscored the importance of vigilant monitoring and personalized management. Acknowledging limitations, future research should prioritize larger, well-designed clinical trials and standardized treatment protocols to enhance our understanding of the impact of targeted therapies on craniopharyngioma patients

    Chordoma Genetic Aberrations and Targeted Therapies Panorama: A Systematic Literature Review

    Get PDF
    Background: Chordomas pose a challenge in treatment due to their local invasiveness, high recurrence, and potential lethality. Despite being slow-growing and rarely metastasizing, these tumors often resist conventional chemotherapies (CTs) and radiotherapies (RTs), making surgical resection a crucial intervention. However, achieving radical resection for chordomas is seldom possible, presenting therapeutic challenges. The accurate diagnosis of these tumors is vital for their distinct prognoses, yet differentiation is hindered by overlapping radiological and histopathological features. Fortunately, recent molecular and genetic studies, including extracranial location analysis, offer valuable insights for precise diagnosis. This literature review delves into the genetic aberrations and molecular biology of chordomas, aiming to provide an overview of more successful therapeutic strategies. Methods: A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 28 January 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "chordomas", "molecular biology", "gene aberrations", and "target therapies". The studies included in this review consist of preclinical cell studies, case reports, case series, randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on genetic and biological aberrations in chordomas. Results: Of the initial 297 articles identified, 40 articles were included in the article. Two tables highlighted clinical studies and ongoing clinical trials, encompassing 18 and 22 studies, respectively. The clinical studies involved 185 patients diagnosed with chordomas. The tumor sites were predominantly sacral (n = 8, 44.4%), followed by clivus (n = 7, 38.9%) and lumbar spine (n = 3, 16.7%). Primary treatments preceding targeted therapies included surgery (n = 10, 55.6%), RT (n = 9, 50.0%), and systemic treatments (n = 7, 38.9%). Various agents targeting specific molecular pathways were analyzed in the studies, such as imatinib (a tyrosine kinase inhibitor), erlotinib, and bevacizumab, which target EGFR/VEGFR. Common adverse events included fatigue (47.1%), skin reactions (32.4%), hypertension (23.5%), diarrhea (17.6%), and thyroid abnormalities (5.9%). Clinical outcomes were systematically assessed based on progression-free survival (PFS), overall survival (OS), and tumor response evaluated using RECIST or CHOI criteria. Notably, stable disease (SD) occurred in 58.1% of cases, and partial responses (PRs) were observed in 28.2% of patients, while 13.7% experienced disease progression (PD) despite targeted therapy. Among the 22 clinical trials included in the analysis, Phase II trials were the most prevalent (40.9%), followed by I-II trials (31.8%) and Phase I trials (27.3%). PD-1 inhibitors were the most frequently utilized, appearing in 50% of the trials, followed by PD-L1 inhibitors (36.4%), CTLA-4 inhibitors (22.7%), and mTOR inhibitors (13.6%). Conclusions: This systematic review provides an extensive overview of the state of targeted therapy for chordomas, highlighting their potential to stabilize the illness and enhance clinical outcomes

    Comparative Efficacy of Transsphenoidal and Transcranial Approaches for Treating Tuberculum Sellae Meningiomas: A Systematic Review and Meta-Analysis

    Get PDF
    Background/Objectives: Tuberculum sellae meningiomas (TSMs) constitute 5-10% of intracranial meningiomas, often causing visual impairment. Traditional microsurgical transcranial approaches (MTAs) have been effective, but the emergence of innovative surgical trajectories, such as endoscopic endonasal approaches (EEAs), has sparked debate. While EEAs offer advantages like reduced brain retraction, they are linked to higher cerebrospinal fluid leak (CSF leak) risk. This meta-analysis aims to comprehensively compare the efficacy and safety of EEAs and MTAs for the resection of TSMs, offering insights into their respective outcomes and complications. Methods: A comprehensive literature review of the databases PubMed, Ovid MEDLINE, and Ovid EMBASE was conducted for articles published on TSMs treated with either EEA or MTA until 2024. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Meta-analysis was performed to estimate pooled event rates and assess heterogeneity. Fixed- and random-effects were used to assess 95% confidential intervals (CIs) of presenting symptoms, outcomes, and complications. Results: A total of 291 papers were initially identified, of which 18 studies spanning from 2000 to 2024 met the inclusion criteria. The exclusion of 180 articles was due to reasons such as irrelevance, non-reporting of selected results, systematic literature review or meta-analysis, and a lack of details on method/results. The 18 studies comprised a total sample of 1093 patients: 444 patients who underwent EEAs and 649 patients who underwent MTAs for TSMs. Gross total resection (GTR) rates ranged from 80.9% for EEAs to 79.8% for MTAs. The rate of visual improvement was 86.6% in the EEA group and 65.4% in the MTA group. The recurrence rate in the EEA group was 6.9%, while it was 5.1% in MTA group. The postoperative complications analyzed were CSF leak, infections, dysosmia, intracranial hemorrhage (ICH), and endocrine disorders. The rate of CSF leak was 9.8% in the EEA group and 2.1% in MTA group. The rate of infections in the EEA group was 5.7%, while it was 3.7% in the MTA group. The rate of dysosmia ranged from 10.3% for MTAs to 12.9% for EEAs. The rate of ICH in the EEA group was 0.9%, while that in the MTA group was 3.8%. The rate of endocrine disorders in the EEA group was 10.8%, while that in the MTA group was 10.2%. No significant difference was detected in the rate of GTR between the EEA and MTA groups (OR 1.15, 95% CI 0.7-0.95; p = 0.53), while a significant benefit in visual outcomes was shown in EEAs (OR 3.54, 95% CI 2.2-5.72; p < 0.01). There was no significant variation in the recurrence rate between EEA and MTA groups (OR 0.92, 95% CI 0.19-4.46; p = 0.89). While a considerably increased chance of CSF leak from EEAs was shown (OR 4.47, 95% CI 2.52-7.92; p < 0.01), no significant difference between EEA and MTA groups was detected in the rate of infections (OR 1.92, 95% CI 0.73-5.06; p = 0.15), the rate of dysosmia (OR 1.25, 95% CI 0.31-4.99; p = 0.71), the rate of ICH (OR 0.61, 95% CI 0.20-1.87; p = 0.33), and the rate of endocrine disorders (OR 1.16, 95% CI 0.69-1.95; p = 0.53). Conclusions: This meta-analysis suggests that both EEAs and MTAs are viable options for TSM resection, with distinct advantages and drawbacks. The EEAs demonstrate superior visual outcomes in selected cases while GTR and recurrence rates support the overall effectiveness of MTAs and EEAs. Endoscopic endonasal approaches had a higher chance of CSF leaks, but there are no appreciable variations in other complications. These results provide additional insights regarding patient outcomes in the intricate clinical setting of TSMs

    Covalent triazine framework/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential

    Get PDF
    Electrochemical reduction of CO2 provides a way to generate base chemicals from an abundant C1-source under mild conditions, whilst at the same time mitigating CO2 emissions. In this work, a novel class of tailorable, porous electrocatalysts for this process is proposed. Covalent triazine frameworks (CTFs) are grown in situ onto functionalized multiwalled carbon nanotubes. Hydroxyl groups decorating the surface of the multiwalled carbon nanotubes facilitate intimate contact between the carbon nanotubes and CTF, thus promoting efficient electron transfer. The novel hybrid materials generate CO with a faradaic efficiency up to 81% at an overpotential of 380 mV. The selectivity of the electrocatalysts could be linked to the amount of nitrogen present within the framework

    SETI scientific activities in Sardinia: Search for ET, pulsars and Fast Radio Bursts

    Get PDF
    The Sardinia Radio Telescope, which was inaugurated in 2013, is getting ready to participate in the Search for ExtraTerrestrial Intelligence (SETI) observations. This involves, in collaboration with the SETI collaboration and the ``Breakthrough Listen initiative", the onsite installation of the SERENDIP VI setup for SETI observations. In parallel, a scientific team at the Cagliari Astronomical Observatory is becoming acquainted with SETI search algorithms: both standard algorithms using the Fast Fourier Transform; and more versatile algorithms using the Kahrunen-Loève Transform (KLT) as well as Wavelets. The team is also investigating the possibility to pursue, with the SERENDIP VI setup, the simultaneous search for Extraterrestrial Intelligence, pulsars and Fast Radio Bursts

    SETI in Sardinia: status of scientific and technological developments

    Get PDF
    Since 2013, several staff members of the Cagliari Astronomical Observatory have been involved with SETI activities, both from a technological and a scientific perspective. One major asset related to this research area is the presence, in the territory, of one of the most modern single-dish antennas: the Sardinia Radio Telescope (SRT). In this paper, we outline all aspects of our initiatives in the framework of the Search for ExtraTerrestrial Intelligence. We describe the development of SRT instrumentation for the purpose of receiving data that could potentially contain signs of life, as well as the directions that we are investigating for studying and analyzing these data, including in an international context

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF
    corecore