136 research outputs found

    Green investment strategies and export performance: A firm-level investigation

    Get PDF
    Ingenio Working Paper Series.In this paper we empirically investigate the relationship between investments in environmentally-oriented equipment and firms’ export performance. Drawing on Porter hypothesis and firm heterogeneity theory, we adopt a structural model where first we estimate the impact of green investment strategies on the level of productive efficiency (TFP), and second we assess whether induced productivity influences the extensive and intensive margin of exports. Relying on a rich firm-level dataset on Italian manufacturing, our results show that firms with higher productivity, induced among other factors by green investment involving environmental protection and reduction in the use of raw materials, have increased commitment to, and profits from, exports, especially towards countries adopting a more stringent environmental regulatory framework. Our evidence provides a ‘green investment-based’ explanation for the link between TFP-heterogeneity and trade.Peer reviewe

    A hybrid finite volume -- spectral element method for aeroacoustic problems

    Full text link
    We propose a hybrid Finite Volume (FV) - Spectral Element Method (SEM) for modelling aeroacoustic phenomena based on the Lighthill's acoustic analogy. First the fluid solution is computed employing a FV method. Then, the sound source term is projected onto the acoustic grid and the inhomogeneous Lighthill's wave equation is solved employing the SEM. The novel projection method computes offline the intersections between the acoustic and the fluid grids in order to preserve the accuracy. The proposed intersection algorithm is shown to be robust, scalable and able to efficiently compute the geometric intersection of arbitrary polyhedral elements. We then analyse the properties of the projection error, showing that if the fluid grid is fine enough we are able to exploit the accuracy of the acoustic solver and we numerically assess the obtained theoretical estimates. Finally, we address two relevant aeroacoustic benchmarks, namely the corotating vortex pair and the noise induced by a laminar flow around a squared cylinder, to demonstrate in practice the effectiveness of the projection method when dealing with high order solvers. The flow computations are performed with OpenFOAM [46], an open-source finite volume library, while the inhomogeneous Lighthill's wave equation is solved with SPEED [31], an opensource spectral element library

    A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies

    Get PDF
    The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies

    “Development and validation of the ICAP Technology Scale to measure how teachers integrate technology into learning activities”

    Full text link
    Previous research investigating the use of technology in school has focused mainly on the frequency of use of digital tools during lessons rather than investigating how technology is integrated with respect to different kinds of learning activities. Since the impact of technology use on learning depends on how it is used and on what activities supported by technology are implemented in lessons, a measurement instrument assessing how technology is integrated into learning activities is necessary to investigate its impact on teaching and learning processes. According to the interactive, constructive, active, and passive (ICAP) framework, which distinguishes four different learning activities based on the level of students' cognitive engagement, we developed the 12-item ICAP Technology Scale (ICAP-TS) that accounts for all four dimensions of technology integration in lessons. We used confirmatory factor analysis to validate the four-factor structure of the ICAP-TS with a sample of 1059 upper-secondary school teachers from Switzerland. We also examined reliability using classical test theory and Rasch model analysis to assess the scale's psychometric characteristics. We then analyzed the associations between the ICAP-TS and a general use frequency measure of 12 educational technologies to test the criterion validity. The results confirmed the four-factor structure of the ICAP-TS and revealed good instrument accuracy. The most difficult items to endorse are those describing the integration of technology into interactive learning activities. Furthermore, all 12 items significantly correlated with the frequency of use of 12 educational technologies. We recommend the ICAP-TS as a short and reliable measurement scale for assessing how technology is integrated into lessons, considering different learning activities based on the ICAP theoretical model

    Shade delays flowering in Medicago sativa

    Get PDF
    Shade intolerant plants respond to the decrease in the red (R) to far-red light (FR) ratio (R:FR) occurring under shade by elongating stems and petioles and re-positioning leaves, in a race to out-compete neighbors for the sunlight resource. In some annual species, these shade-avoidance responses (SAS) are accompanied by the early induction of flowering. Anticipated flowering is viewed as a strategy to set seeds before the resources become severely limiting. Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa (Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by supplementing with FR. Low R:FR produced a classical SAS, such as increased internode and petiole length but, unexpectedly, delayed flowering. To understand the molecular mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic approach. SAS were likely mediated by increased expression of msPIF3 and msHB2 in low R:FR. Constitutive expression of these genes in Arabidopsis led to SAS, including early flowering, strongly suggesting their roles are conserved. Delayed flowering was likely to be mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative phase under sub-optimal light conditions and thus assure the accumulation of reserves necessary to resume growth after the next season. This article is protected by copyright. All rights reserved.Fil: Lorenzo, Christian Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Iserte, Javier Alonso. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Sanchez Lamas, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Antonietti, Mariana Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Garcia Gagliardi, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Hernando, Carlos Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Dezar, Carlos Alberto Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Agrobiotecnología de Rosario; ArgentinaFil: Vazquez, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Agrobiotecnología de Rosario; ArgentinaFil: Casal, Jorge José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Yanovsky, Marcelo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cerdan, Pablo Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Model-driven analysis of eyeblink classical conditioning reveals the underlying structure of cerebellar plasticity and neuronal activity

    Get PDF
    The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors

    Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms

    Get PDF
    In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. Methods: By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. Results: First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. Conclusions: We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes. Significance: This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical application
    corecore