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Abstract— Thanks to the development of realistic neural 
models, computational neuroscience is becoming fundamental 
to understand the complex functioning of the human brain. 
Several studies have demonstrated the role of computational 
models in revealing the links between the low-level activity at 
multiple neural scales and human-like behaviors, under 
physiological conditions. However, limited resources have been 
employed in applying computational neuroscience to the 
understanding of brain diseases. In this work, we focused on 
the cerebellum that has a crucial role in driving learning and 
timing of motor commands during associative tasks. We 
provided a preliminary analysis on the use of a computational 
model to investigate a type of cerebellar ataxia that involves 
cortical degeneration. Starting from an optimized realistic 
Spiking Neural Network representing the cerebellar 
microcircuit, we applied specific local modifications to mimic 
the same damage as in patients. Then, we analyzed the 
behavior generated by the low-level neural activity of the 
network during a Pavlovian associative task. We were able to 
reproduce the same impaired behavior shown in human tests, 
characterized by a decreased capability to associate the 
provided stimuli. Moreover, the changes in the simulated 
neural activity agreed with the findings from neural 
recordings in animals affected by the same pathological 
condition. Therefore, we demonstrated that our model could 
be used also to represent cerebellar pathologies, with the 
possibility to link damages at neural level to compromised 
behaviors, which is one of the main actual challenges in 
neuroscience. 
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I. INTRODUCTION  

In these years, much effort in the neuroscience 
community is being put on the development of new tools, 
coming from the computer science and the engineering 
world, to explore and understand the complex mechanisms 
of the brain functioning [1, 2]. The two brain initiatives, 
both in Europe [3] and in US [4], are aiming to generate 
physical and conceptual tools to determine how human 
brain functions at different scales: from molecules to 
behaviors and thoughts, linking what is known about single 

neurons to the high-level brain function. These new tools 
aimed at establishing a holistic understanding of how the 
dynamic activities in the brain generate actions, 
consciousness and cognition. 

Computational models are considered exciting 
opportunities to make predictions, starting from the 
neurophysiological evidences, on the macroscopic and 
microscopic behavior of the brain [5]. This work 
circumscribes the application of computational models to 
the cerebellum only. Both animal and human studies 
provided evidence that the cerebellum plays an important 
role in a temporal associative paradigm, the Eye Blink 
Conditioning (EBC) [6]. Extensive research has been 
performed to elucidate the various contributions of the 
different layers of the cerebellum (e.g. the cerebellar cortex, 
the granular layer and the deep nuclear layer), in the 
acquisition, extinction and retention of conditioned eye 
blink responses [7].  

The Pavlovian Eye Blink association is learned along 
with repeated paired presentation of stimuli, a Conditioned 
Stimulus (CS, a tone) followed by an Unconditioned 
Stimulus (US, an air-puff, eliciting the eye blink reflex). 
The cerebellum learns to produce a Conditioned Response 
(CR, like an eye blink) anticipating the US onset [8]. 

The cerebellum employs long-term synaptic 
modifications to learn and store information: these 
mechanisms are Long-Term Depression (LTD) and Long-
Term Potentiation (LTP). The plasticity at the Parallel 
Fibers-Purkinje Cells (PFs-PCs) synapses has classically 
been assumed to learn the temporal association during the 
EBC, but it cannot account for the multiple time-scales of 
cerebellar learning. Plastic mechanisms involving other 
synapses were hypothesized [9, 10] and a 
cerebellum-inspired model was developed [11], consisting 
of a realistic Spiking Neural Network (SNN). In previous 
works [12–16], the cerebellar model was tested in EBC 
simulations and it was able to reproduce realistic behaviors, 
similar to the human ones. 

In this study, we aimed at exploiting the detailed 
computational model to mimic a pathology of the 
cerebellum, thus providing a proof of concept of the 
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application of computational neuroscience in medicine to 
understand brain diseases [17]. In fact, due to the high 
complexity of neural circuits, it is becoming necessary to 
develop new techniques that could be used together with 
traditional methods to reveal the mechanisms causing 
pathologies, so as to overcome the limits of the current 
investigation techniques. 

We focused on the cerebellar cortex, since a damage to 
this area of the cerebellum has been associated with specific 
pathologies [18, 19]. In this case, the EBC paradigm is a 
common tool to investigate the impairment. In fact, cortical 
neurons have an inhibitory action on the cerebellar output, 
which can be modulated, thanks to synaptic plasticity with a 
precise timing, to generate the CR [8]. Therefore, a cortical 
damage results in a compromised conditioning during 
associative tasks, as demonstrated also by Dimitrova and 
colleagues in [20], here considered as the reference 
experimental case. 

After an automated tuning of the cerebellar model’s 
parameters to replicate the healthy behavior, we “impaired” 
the cerebellar model, reducing the number of PCs. The 
modified network generated a compromised behavior, 
similar to the cerebellar patients’ one. With this 
computational approach, we were able to analyze the 
underlying mechanisms of observed behaviors, both in 
healthy and in altered conditions. 

II. MATERIALS AND METHODS 

A. Cerebellar Model 

In order to reproduce physiological and pathological 
conditions during EBC, we used an open source platform 
modeling the cerebellum as a realistic SNN [21, 22]. 
Specifically, the simulator was based on the event-driven 
simulation method and it used pre-compiled Look-Up 
Tables to speed up the computation of neural states [23]. 
We performed all the tests on a desktop PC (Intel® Xeon® 
CPU E5-1620 v2 @3.70 GHz with 32 GB of RAM and 
Windows 7 as Operating System). We customized the 
network in order to have population size and connection 
ratios inspired to the physiological cerebellar features. We 
then provided the SNN with specific input signals to 
simulate the EBC paradigm [15]. Therefore, the resulting 
model included 6480 total neurons (Figure 1): 300 Mossy 
Fibers (MFs) conveyed the CS to 6000 Granular Cells, 
giving a sparse encoding of the input and then contributing 
to the passage-of-time representation, which is fundamental 
in EBC [24]; the Granular Cells signal converged to 72 PCs 
through the Parallel Fibers, while the PCs also received the 
US teaching signal from 72 Inferior Olive (IOs) neurons. 

The sole output of the cerebellar network was provided by 
the 36 DCNs cells, receiving an excitatory signal from MFs 
and an inhibitory signal from PCs.  

 

Fig. 1 SNN architecture, with different groups of cells and relative input 
(i.e. CS and US) and output (i.e. CR) signals. 

During acquisition trials, both CS and US were provided 
to the model, as random spike patterns with physiological 
firing rates to the MFs and the IOs, respectively. On the 
other hand, in the extinction trials the CS was the only input 
to the network. The CR was detected based on the analog 
signal obtained after decoding the DCNs spiking activity. In 
particular, a CR was generated at time tCR  when the 
DCNoutput signal overcame the threshold baseline+offset, 
being baseline the mean value of the signal in the first time 
window of each trial and offset a constant value. In addition, 
two further constraints were verified: the CR occurred in the 
200 ms interval before US onset and the DCNoutput signal 
reached the threshold after a rapid increase of its value [25]; 
to fulfill the second condition, we imposed: 

 DCNoutput (tCR)
mean (DCNoutput (t≤tCR))

≥3 (1) 

Synaptic plasticity contributed to modify the activity of 
specific neural populations and then to modulate the output 
signal in order to achieve conditioning. For this purpose, the 
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network was endowed with 3 plasticity sites at both cortical 
and nuclear level [14, 26]. Plasticity at PFs-PCs synapses 
was responsible for fast learning and it was modeled as LTP 
and LTD modulated by the IOs teaching signal. On the 
other hand, nuclear plasticity at MFs-DCNs connections 
was modeled as LTP and LTD triggered by PCs, while 
Spike Time-Dependent Plasticity was used for PCs-DCNs 
synapses. Specific learning rules were used for the three 
plasticity sites [15]. 

B. Optimization algorithm 

As the overall system was quite complex and included 
several parameters, a Genetic Algorithm (GA) was selected 
to tune the model, due to the demonstrated success of this 
technique in optimizing the weights and the parameters of 
neural networks [27]. The algorithm was developed in 
MATLAB environment, using the Parallel Computing 
Toolbox to speed up the whole process. Each generation 
included a population of 12 individuals, whose genes were 
the LTP and LTD rates for the learning rules and the initial 
weights at each plasticity site: LTP1 and LTD1 for the PFs-
PCs connections, LTP2 and LTD2 for the MFs-DCNs 
synapses, LTP3 and LTD3 for the PCs-DCNs connections, 
and weight0PFPC, weight0MFDCN, weights0PCDCN. 

The performance of each individual was evaluated based 
on the outcome of EBC simulations. The protocol for the 
associative task included 2 consecutive sessions of 100 
acquisition trials and 30 extinction trials, with an Inter 
Stimulus Interval (ISI) = 440 ms, CS = 540 ms, US = 100 
ms co-terminating with CS (“delay EBC”). Based on human 
neurophysiological data on EBC [28], the maximum fitness 
value (i.e. 1) was assigned to the individuals reaching 70% 
of CRs during acquisition and 30% of CRs during 
extinction of both sessions. After computing the fitness for 
each individual, selection, crossover and mutation were 
performed. The genetic operators were chosen so as to 
achieve elitism, exploration and exploitation of the solution 
space, which are fundamental principles in the GA theory. 

When one of the stop criteria (i.e. reaching a maximum 
number of generations or having no improvements of the 
maximum fitness for a fixed number of generations) was 
met, the optimal parameters were computed as the mean 
value of the genes of all the 1-fitness individuals throughout 
the evolution process. 

Then, in order to verify the proper physiological 
functioning of plasticity mechanisms, we performed 
simulations of the same protocol also with the 1-plasticity 
version of the network, where only PFs-PCs synapses 
underwent LTP and LTD, using the same optimal 
parameters [16]. 

We evaluated the outcome of the model, i.e. the %CR in 
blocks of 10 trials, and comparing the results in the 2 
sessions of the 1-plasticity and 3-plasticity simulations. In 
particular, we were interested in deepening the differences 
of the two models in long term, i.e. during the second 
session after the long acquisition and the extinction phases 
of session 1. 

C. Simulation of cortical degeneration 

Starting from the optimized and validated physiological 
model, we modified specific low-level properties in order to 
reproduce pathological conditions. 

We referred to an experimental study on cerebellar 
patients suffering from some types of Spinocerebellar 
Ataxia [20], characterized by a lesion to the cerebellar 
cortex. To reproduce the same damage in our model, we 
removed 15 PCs from the network, corresponding to 20% of 
the total PCs. We then performed EBC simulations with 36 
different random templates of PCs removal so as to obtain 
stable results. We used the same protocol as in the reference 
study: 10 blocks of 10 trials including 9 CS-US trials and 
one CS-alone trial, with ISI = 440 ms, CS lasting 540 ms, 
US lasting 100 ms and co-terminating with CS. 

The outcomes of the optimal physiological and 
pathological models were compared through the 
representation of the total percentage of CRs during the 
simulations and the %CR in each 10-trial block. We used 
the mean and Standard Error (SE) among the 36 
pathological simulations, as performance parameters, like in 
the reference study. Then, the results were compared to the 
outcome of experiments on patients, in order to prove the 
capability of the model to reproduce the impaired behavior 
that typifies PCs lesion. 

We also analyzed the low-level activity of the network, 
to achieve a deeper insight into the altered mechanisms 
involved in the pathological behavior. We represented the 
DCNoutput signal in a late acquisition trial for both 
physiological and pathological simulations; so we could 
make the comparison with the results of animal recordings 
that investigated the role of the cerebellar cortex during 
EBC [8]. Moreover, we evaluated the spiking activity of 
PCs and DCNs, which are the neural populations influenced 
by synaptic plasticity. For the healthy case and the 
pathological example, we computed the number of spikes in 
time-bins of 10 ms during each trial, for the whole 
simulation protocol. 
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III. RESULTS 

A. Optimized physiological model 

The starting point of our analysis was the optimized 
realistic model in physiological conditions. After 100 
generations without any improvement of the maximum 
fitness, the GA stopped and we obtained the final 
parameters as the mean values of the 1-fitness individuals’ 
genes. This way, we selected the solution in an intermediate 
optimal region of the search space. The optimization 
strategy also allowed to automate the tuning procedure, 
sparing time and resources. 

Thanks to the further check with the 1-plasticity version 
of the model, we could confirm the validity of the obtained 
parameters. In fact, the trend of %CR agreed with the 
results obtained on the same protocol with a similar model 
[15]. As shown in Figure 2, the consolidation role of nuclear 
plasticity appeared in session 2, where the 3-plasticity 
network achieved a faster acquisition and a higher %CR 
[28]. 

 

Fig. 2 %CR in blocks of 10 trials during protocol after optimization, with 
the 1-plasticity (black line) and the 3-plasticity (red line) networks. 

B. Pathological model in case of cortical degeneration 

The results of simulations with 15 removed PCs 
demonstrated the high potential of computational models in 
reproducing and understanding pathological conditions. 

We showed that in case of a cortical lesion, the mean 
total percentage of CRs was significantly lower than in the 
healthy case and conditioning did not occur neither during 
late acquisition, with a maximum 10% of average %CR 
(Figure 3A). This impaired behavior perfectly agreed with 
the outcome of tests in cerebellar patients [20]. Indeed, they 
obtained the same mean total percentage of CRs and a 
similar non-increasing trend of %CR, characterized by a 

mean value of about 10% throughout the whole protocol 
(Figure 3B). 
 In healthy conditions, they reported an increase of %CR 
throughout the protocol, reaching a lower total %CR than in 
our simulations. This discrepancy depended on the fact that 
our simulated healthy model had to reach the 70% of CRs 
during the acquisition phase. 

 

Fig. 3 Comparison between the outcome of simulations (Panel A) and the 
results in the reference study (Panel B – adapted from [20]). The mean and 
SE of %CR in blocks of 10 trials and over the total blocks are reported for 

the healthy (in red) and pathological (in blue) cases. 

In the analysis of the neural changes leading to the 
behavioral modifications, we were able to verify the same 
low-level outcome as in animal experiments that 
investigated PCs loss. The physiological DCNoutput during 
EBC was characterized by a peak corresponding to the CR 
and a null value elsewhere. When removing some PCs, the 
shape of the DCNoutput was modified: the signal had a 
higher value during the whole trial and it was not possible 
to identify a significant sharp peak generating the CR 
(Figure 4). A similar change in the cerebellar output was 
measured in rabbits after a lesion to the cortex [8]. 

Going further into this analysis, we found the basic 
causes for the altered output of the circuit and the 
compromised behavior, in the variation of PCs and DCNs 
spiking activity. As shown in Figure 5A, the removal of 
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some PCs caused a decrease of their activity along all the 
trial duration; nevertheless, synaptic plasticity at the 
functioning PFs-PCs synapses completely inhibited PCs in 
the time window for CRs, after some acquisition trials. 

However, this was not sufficient to generate CRs, 
because the lack of an efficient time-locked inhibition on 
the DCNs by the PCs caused the nuclear neurons to increase 
their baseline activity (Figure 5B). Therefore, the resulting 
output signal did not fulfill all the requirements to produce a 
CR, as previously explained. 

 

Fig. 4 Representation of the DCNoutput signal during a late acquisition 
trial, for simulations of the healthy (top) and pathological case (bottom). 

 

Fig. 5 Spiking activity of PCs (Panel A) and DCNs (Panel B) as the 
number of spikes in time-bins of 10 ms for the 100 trials of the protocol, 
during healthy (on the left) and pathological (on the right) simulations. 

IV. DISCUSSION 

Our results demonstrated the potential role of 
computational neuroscience in investigating brain diseases. 

Thanks to the optimization and validation of our realistic 
cerebellar network through the comparison with previous 
results, we started from a solid basis to develop a proof of 
concept for a new tool in medicine. We were able to apply a 
localized lesion to the cerebellar circuit and then study the 
effects on associative learning and underlying neural 
activity. In fact, the analysis of the low-level behavior of the 
SNN (e.g. the shape of the DCNoutput or the changes in the 
firing rates patterns of PCs and DCNs) in the two 
conditions, explained the causes of the high-level 
misbehavior. Then, we could generalize our results to other 
cerebellar pathologies, involving the PCs damage 
reproduced in our network. For example, a decrease in the 
PCs number has been associated with fetal alcohol exposure 
[19] or with the age-related neural loss which is typical of 
Alzheimer’s Disease patients [18]. 

Further analysis should be performed to predict the role 
of neural plasticity in this pathological condition. In fact, 
synaptic modifications have been proved crucial for 
cerebellum-driven physiological motor learning [9], and 
they could have a key role in developing compensatory 
mechanisms after a damage. Moreover, other cerebellar 
diseases could be considered in order to demonstrate the 
robustness of the current approach as an instrument to 
reproduce the effect of different lesions in the cerebellar 
circuit. Finally, an update of the network (e.g. increase the 
number of neurons and including plasticity at further sites) 
will become necessary to improve the realism of the model 
and use it as a diagnostic tool. 

In summary, promising applications of our method 
include the use in neuroscience to predict the behavior 
under different conditions and to deeply understand brain 
diseases, by making and verifying hypotheses on 
pathological mechanisms. Finally, realistic computational 
models could be used to simulate the effect of drugs and 
suggest possible treatments for diseases. 

V. CONCLUSIONS  

In this work, we developed a realistic pathological model 
of the cerebellum with a decreased number of PCs that 
properly reproduced the altered behavior observed in ataxic 
patients. Moreover, also the modified underlying 
mechanisms agreed with the results from neural recordings 
in animals characterized by the same cortical lesion. Then, 
we could shed light on the changed neural activity leading 
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to the high-level misbehaviors, which is not possible during 
in vivo experiments. 

Therefore, given the promising results, the current 
approach paves the way to the development of new 
branches of computational neuroscience investigating brain 
diseases. 
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