66 research outputs found

    Effect of a wood-based carrier of Trichoderma atroviride SC1 on the microorganisms of the soil

    Get PDF
    Wood pellets can sustain the growth of Trichoderma spp. in soil; however, little is known about their side effects on the microbiota. The aims of this study were to evaluate the effect of wood pellets on the growth of Trichoderma spp. in bulk soil and on the soil microbial population’s composition and diversity. Trichoderma atroviride SC1 coated wood pellets and non-coated pellets were applied at the level of 10 g∙kg−1 of soil and at the final concentration of 5 × 103 conidia∙g−1 of soil and compared to a conidial suspension applied at the same concentration without the wood carrier. Untreated bulk soil served as a control. The non-coated wood pellets increased the total Trichoderma spp. population throughout the experiment (estimated as colony-forming unit g−1 of soil), while wood pellets coated with T. atroviride SC1 did not. The wood carrier increased the richness, and temporarily decreased the diversity, of the bacterial population, with Massilia being the most abundant bacterial genus, while it decreased both the richness and diversity of the fungal community. Wood pellets selectively increased fungal species having biocontrol potential, such as Mortierella, Cladorrhinum, and Stachybotrys, which confirms the suitability of such carriers of Trichoderma spp. for soil applicatio

    Simulated global warming affects endophytic bacterial and fungal communities of Antarctic pearlwort leaves and some bacterial isolates support plant growth at low temperatures

    Get PDF
    Antarctica is one of the most stressful environments for plant life and the Antarctic pearlwort (Colobanthus quitensis) is adapted to the hostile conditions. Plant-associated microorganisms can contribute to plant survival in cold environments, but scarce information is available on the taxonomic structure and functional roles of C. quitensis-associated microbial communities. This study aimed at evaluating the possible impacts of climate warming on the taxonomic structure of C. quitensis endophytes and at investigating the contribution of culturable bacterial endophytes to plant growth at low temperatures. The culture-independent analysis revealed changes in the taxonomic structure of bacterial and fungal communities according to plant growth conditions, such as the collection site and the presence of open-top chambers (OTCs), which can simulate global warming. Plants grown inside OTCs showed lower microbial richness and higher relative abundances of biomarker bacterial genera (Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Aeromicrobium, Aureimonas, Hymenobacter, Novosphingobium, Pedobacter, Pseudomonas and Sphingomonas) and fungal genera (Alternaria, Cistella, and Vishniacozyma) compared to plants collected from open areas (OA), as a possible response to global warming simulated by OTCs. Culturable psychrotolerant bacteria of C. quitensis were able to endophytically colonize tomato seedlings and promote shoot growth at low temperatures, suggesting their potential contribution to plant tolerance to cold condition

    Potato Root-Associated Microbiomes Adapt to Combined Water and Nutrient Limitation and have a Plant Genotype-Specific Role for Plant Stress Mitigation

    Get PDF
    Background Due to climate change and reduced use of fertilizers combined stress scenarios are becoming increasingly frequent in crop production. In a eld experiment we tested the effect of combined water and phosphorus limitation on the growth performance and plant traits of eight tetraploid and two diploid potato varieties as well as on root-associated microbiome diversity and functional potential. Microbiome and metagenome analysis targeted the diversity and potential functions of prokaryotes, fungi, plasmids and bacteriophages and was linked to plant traits like tuber yield or timing of canopy closure

    Roots and Panicles of the C4 Model Grasses Setaria viridis (L). and S. pumila Host Distinct Bacterial Assemblages With Core Taxa Conserved Across Host Genotypes and Sampling Sites

    Get PDF
    Virtually all studied plant tissues are internally inhabited by endophytes. Due to their relevance for plant growth and health, bacterial microbiota of crop plants have been broadly studied. In plant microbiome research the root is the most frequently addressed environment, whereas the ecology of microbiota associated with reproductive organs still demands investigation. In this work, we chose the model grasses Setaria viridis and Setaria pumila to better understand the drivers shaping bacterial communities associated with panicles (representing a reproductive organ) as compared to those associated with roots. We collected wild individuals of both grass species from 20 different locations across Austria and investigated the bacterial assemblages within roots and ripe grain-harboring panicles by 16S rRNA gene-based Illumina sequencing. Furthermore, plant samples were subjected to genotyping by genetic diversity-focused Genotyping by Sequencing. Overall, roots hosted more diverse microbiota than panicles. Both the plant organ and sampling site significantly shaped the root and panicle-associated microbiota, whereas the host genotype only affected root communities. In terms of community structure, root-specific assemblages were highly diverse and consisted of conserved bacterial taxa. In contrast, panicle-specific communities were governed by Gammaproteobacteria, were less diverse and highly origin-dependent. Among OTUs found in both plant tissues, relative abundances of Gammaproteobacteria were higher in panicles, whereas Rhizobiales dominated root communities. We further identified core and non-core taxa within samples of both Setaria species. Non-core taxa included members of the Saccharibacteria and Legionelalles, while core communities encompassed eleven OTUs of seven bacterial orders, together with a set of ten panicle-enriched OTUs. These communities were widespread across root and panicle samples from all locations, hinting toward an evolved form of mutualism through potential vertical transmission of these taxa within Setaria species

    Leaf treatments with a protein-based resistance inducer partially modify phyllosphere microbial communities of grapevine

    Get PDF
    Protein derivatives and carbohydrates can stimulate plant growth, increase stress tolerance, and activate plant defense mechanisms. However, these molecules can also act as a nutritional substrate for microbial communities living on the plant phyllosphere and possibly affect their biocontrol activity against pathogens. We investigated the mechanisms of action of a protein derivative (nutrient broth, NB) against grapevine downy mildew, specifically focusing on the effects of foliar treatments on plant defense stimulation and on the composition and biocontrol features of the phyllosphere microbial populations. NB reduced downy mildew symptoms and induced the expression of defense-related genes in greenhouse- and in vitro-grown plants, indicating the activation of grapevine resistance mechanisms. Furthermore, NB increased the number of culturable phyllosphere bacteria and altered the composition of bacterial and fungal populations on leaves of greenhouse-grown plants. Although, NB-induced changes on microbial populations were affected by the structure of indigenous communities originally residing on grapevine leaves, degrees of disease reduction and defense gene modulation were consistent among the experiments. Thus, modifications in the structure of phyllosphere populations caused by NB application could partially contribute to downy mildew control by competition for space or other biocontrol strategies. Particularly, changes in the abundance of phyllosphere microorganisms may provide a contribution to resistance induction, partially affecting the hormone-mediated signaling pathways involved. Modifying phyllosphere populations by increasing natural biocontrol agents with the application of selected nutritional factors can open new opportunities in terms of sustainable plant protection strategie

    Soil composition and rootstock genotype drive the root associated microbial communities in young grapevines

    Get PDF
    Soil microbiota plays a significant role in plant development and health and appears to be a major component of certain forms of grapevine decline. A greenhouse experiment was conducted to study the impact of the microbiological quality of the soil and grapevine rootstock genotype on the root microbial community and development of young plants. Two rootstocks heterografted with the same scion were grown in two vineyard soils differing in microbial composition and activities. After 4 months, culture-dependent approaches and amplicon sequencing of bacterial 16S rRNA gene and fungal ITS were performed on roots, rhizosphere and bulk soil samples. The root mycorrhizal colonization and number of cultivable microorganisms in the rhizosphere compartment of both genotypes were clearly influenced by the soil status. The fungal diversity and richness were dependent on the soil status and the rootstock, whereas bacterial richness was affected by the genotype only. Fungal genera associated with grapevine diseases were more abundant in declining soil and related root samples. The rootstock affected the compartmentalization of microbial communities, underscoring its influence on microorganism selection. Fluorescence in situ hybridization (FISH) confirmed the presence of predominant root-associated bacteria. These results emphasized the importance of rootstock genotype and soil composition in shaping the microbiome of young vines

    Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport

    Get PDF
    Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate‐dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments

    Nationwide consensus on the clinical management of treatment-resistant depression in Italy: a Delphi panel

    Get PDF
    Background: Treatment-resistant depression (TRD) is defined by the European Medicines Agency as a lack of clinically meaningful improvement after treatment, with at least two different antidepressants. Individual, familiar, and socio-economic burden of TRD is huge. Given the lack of clear guidelines, the large variability of TRD approaches across different countries and the availability of new medications to meet the need of effective and rapid acting therapeutic strategies, it is important to understand the consensus regarding the clinical characteristics and treatment pathways of patients with TRD in Italian routine clinical practice, particularly in view of the recent availability of esketamine nasal spray. Methods: A Delphi questionnaire with 17 statements (with a 7 points Likert scale for agreement) was administered via a customized web-based platform to Italian psychiatrists with at least 5 years of experience and specific expertise in the field of depression. In the second-round physicians were asked to answer the same statements considering the interquartile range of each question as an index of their colleagues' responses. Stata 16.1 software was used for the analyses. Results: Sixty panellists, representative of the Italian territory, answered the questionnaire at the first round. For 8/17 statements more than 75% of panellists reached agreement and a high consensus as they assigned similar scores; for 4 statements the panellists assigned similar scores but in the middle of the Likert scale showing a moderate agreement with the statement, while for 5 statements there was indecision in the agreement and low consensus with the statement. Conclusions: This Delphi Panel showed that there is a wide heterogeneity in Italy in the management of TRD patients, and a compelling need of standardised strategies and treatments specifically approved for TRD. A high level of consensus and agreement was obtained about the importance of adding lithium and/or antipsychotics as augmentation therapies and in the meantime about the need for long-term maintenance therapy. A high level of consensus and agreement was equally reached for the identification of esketamine nasal spray as the best option for TRD patients and for the possibility to administrate without difficulties esketamine in a community outpatient setting, highlighting the benefit of an appropriate educational support for patients
    • 

    corecore