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Abstract: Wood pellets can sustain the growth of Trichoderma spp. in soil; however, little is known
about their side effects on the microbiota. The aims of this study were to evaluate the effect of
wood pellets on the growth of Trichoderma spp. in bulk soil and on the soil microbial population’s
composition and diversity. Trichoderma atroviride SC1 coated wood pellets and non-coated pellets
were applied at the level of 10 g·kg−1 of soil and at the final concentration of 5 × 103 conidia·g−1

of soil and compared to a conidial suspension applied at the same concentration without the wood
carrier. Untreated bulk soil served as a control. The non-coated wood pellets increased the total
Trichoderma spp. population throughout the experiment (estimated as colony-forming unit g−1 of
soil), while wood pellets coated with T. atroviride SC1 did not. The wood carrier increased the richness,
and temporarily decreased the diversity, of the bacterial population, with Massilia being the most
abundant bacterial genus, while it decreased both the richness and diversity of the fungal community.
Wood pellets selectively increased fungal species having biocontrol potential, such as Mortierella,
Cladorrhinum, and Stachybotrys, which confirms the suitability of such carriers of Trichoderma spp. for
soil application.

Keywords: Trichoderma; substrate; soil; metabarcoding; diversity; community composition; wood pellets

1. Introduction

Biological control of soil-borne diseases is a valuable alternative to synthetic chem-
ical fungicides [1], and, within the genus Trichoderma [2], several strains have demon-
strated good efficacy against soil-borne pathogens such as Rhizoctonia solani, Fusarium spp.,
Pythium spp., and nematodes of the genus Meloidogyne [3]. However, the success of treat-
ments with Trichoderma spp. depends highly on the physicochemical and biological traits
of the soil, as well as the rhizosphere competence of the strains used. After the soil
treatment, the population of Trichoderma spp. normally tends to decrease over time [4].
This problem is usually addressed by applying high quantities of the biocontrol agent
and/or by formulating the biocontrol agent (i.e., as a wettable powder, emulsion, pellets,
granules, etc.) or adding nutrients to the formulation that can extend its longevity in the
soil [5–8]. Particular formulations of biocontrol agents comprise aids that can preserve
them, favor their delivery to targets, and improve their activity [9]. Another limiting factor
that prevents the widespread use of Trichoderma spp. in soil treatments is the difficulty in
homogenously applying small quantities of conidia in large volumes of soil [10]. Although
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several authors have addressed the effectiveness of formulations and the addition of nu-
trients [11–20], limited information is available on the effect of such components on the
soil microbiome [21]. More particularly, the effect of the use of lignocellulosic substrates
inoculated with Trichoderma spp. on soil fungal and bacterial populations is unknown.

The use of wood pellets coated with conidia of Trichoderma spp. might represent an
interesting approach for soil treatments [10]. For example, Trichoderma atroviride SC1 can
easily grow on beech wood pellets and reach high population levels (e.g., 109 cfu·g−1

of wood pellet), especially if complemented with nitrogen sources, such as soy protein
isolates. The advantage of using wood pellets is double: they can be easily spread and
incorporated in soil by using standard equipment (e.g., using a fertilizer spreader, followed
by harrowing) and support the growth of the fungus, which colonize wood before other
microbes and then outcompete them. For example, early or simultaneous inoculation
of T. viride or T. harzianum with basidiomycetes that can attack coconut fibers, such as
Trametes versicolor and Stereum rugosum, can protect coconuts from white rot decay, mainly
by nutrient competition, but also by toxins that can inhibit the growth of the pathogens [22].
On the other hand, carriers can also modify the soil microbial communities’ composition.
Since soil microbial communities often act synergistically to control soil-borne pathogens, a
change in the soil microbial community structure, and/or a reduction in biodiversity, may
affect the occurrence of soil-borne diseases [23].

Many factors can contribute to shifting the microbial populations in the soil, such
as the soil type and pH, structure, salinity, and moisture, but most importantly, soil
organic matter and plant exudates [24,25]. Generally, adding organic matter to the soil
enhances the microbial activity [26–28], while the use of mineral fertilizers can reduce
fungal diversity [29,30]. The inoculation of Trichoderma spp. without organic matter
has a transient effect on the microbial population of the soil [31,32], and combining the
application of Trichoderma spp. with organic composts and bio-organic fertilizers has
been proposed as an alternative to mineral fertilizers; in fact, adding these species to the
substrate can increase soil fertility and microbial biodiversity [33,34].

The aim of this study was to test the effectiveness of a carrier of T. atroviride SC1 made
from wood pellets in prolonging the survival of the fungus in the soil and to evaluate
its possible impact on the soil microbiota by metabarcoding analysis of the microbial
communities. Although this case study is based on the use of a specific carrier (beech
wood pellet) and a specific strain (T. atroviride SC1) in a single soil, the protocol could be
replicated for other similar combinations, for future comparison.

2. Materials and Methods
2.1. Coating the Wood Pellets with Trichoderma atroviride SC1, Soil Treatments and
Experimental Design

Beech wood pellets (Italwood S.r.l., Piovene Rocchette, Italy) were used as carriers
to deliver T. atroviride SC1 to the soil. Wood pellets were coated with conidia, according
to Chammem et al. [10]. Briefly, beech pellets (100 g) were dried in an oven at 120 ◦C
for 12 h, sprayed with soy protein isolates (30 mg·mL−1 corresponding to a final rate
of 3 mg·g−1 of pellets) and coated with 0.1 mL of T. atroviride SC1 conidia sterile water
suspension (SDW) with a spray bottle, while continuously mixing in a mixer (MUM44R1-
BSH Elettrodomestici S.p.A., Milan, Italy) at a speed of 25 rpm. Conidia were prepared
according to Longa et al. [35] and adjusted with a hemocytometer at 5 × 106 conidia·mL−1

to reach a final concentration of 5 × 105 conidia·g−1 of pellets. The wood pellets were used
immediately after coating.

The experiment was carried out under controlled greenhouse conditions, at a temper-
ature of 25 ± 1◦C and relative humidity 70 ± 10%, in 2020. The coated wood pellets were
applied to a bulk of sandy loam soil (69.7% sand: 26.3% lime: 4% clay, pH 8) collected in San
Michele all’Adige, Italy (N 46.182315, E 11.118804), representing a typical agricultural soil
of this region (apple orchards). The soil was mixed thoroughly, sieved, and then distributed
into 20 plastic pots (Mongardi, Ferriera di Buttigliera Alta, Italy; 2L) at 1 kg of soil·pot−1. A
randomized block design was used, with four treatments and five replicates (pots) each:



J. Fungi 2021, 7, 751 3 of 18

bulk soil (untreated control; Ctr), soil mixed with non-coated wood pellet (Trt1), soil mixed
with a conidial SDW suspension T. atroviride SC1 (Trt2), and soil mixed with of T. atroviride
SC1 coated pellets prepared as described above (Trt3). The final estimated concentration of
T. atroviride SC1 conidia in Trt2 and Trt3 was 5 × 103 conidia·g−1 of soil. The wood pellets
in Trt1 and Trt3 were applied by laying them on the soil surface (10 g·pot−1), spraying
50 mL of SDW pot−1, letting them swell and disintegrate (20 min), and gently mixing
the broken-down pieces in the soil. The Ctr and TR2 were sprayed with 50 mL of SDW
per pot−1. After calculation of the water holding capacity of the soil using the percolation
method, the soil was kept at 60 ± 10% humidity, by weighing the pots every two days
and adding the quantity of water that was lost by evaporation. The experiment (E1) was
repeated after one week (E2).

To ensure the absence of T. atroviride SC1 in the soil, real-time PCR primers and probes,
designed for the detection and quantification of T. atroviride SC1 [36], were used to check
the bulk soil before the experiments.

2.2. Soil Sampling

The growth of T. atroviride SC1 was monitored by sampling the soil immediately after
completing the treatments (12 h, D0), every 15 days in the first two months (D15, D30, D45,
D60), and the final sampling was carried out after ninety days (D90). Samples of soil (5 g)
were collected from each pot (replicate) by taking 1 g from the center of the pot and 1 g
from each of its four corners. The samples were put in 50 mL sterile Falcon tubes (Merk Life
Science S.r.l., Milan, Italy) and thoroughly mixed. Colony forming unit (cfu) counting was
performed by suspending 1 g from each falcon tube in 10 mL of SDW, vortexing for 1 min,
and plating 100–200 µL from the SDW suspension on a Trichoderma semi-selective medium
that contained potato dextrose agar (Oxoid, Basingstoke, UK, 39 g·L−1), rose bengal (Sigma
Aldrich, Anekal Taluk, India, 0.1 g·L−1), chloramphenicol (Sigma Aldrich, Beijing, China,
0.1 g·L−1), and streptomycin sulfate (Fluka Biochemika, Milan, Italy, 0.05 g·L−1). The
results are reported as cfu·g−1 of soil ± the standard deviation.

For metabarcoding analysis, only four replicates from each treatment were considered
and were chosen randomly. Samples (1 g) were collected at D0, D15, and D90, lyophilized
in a freeze-dryer (HetoLyoLab 3000-Analitica De Mori, Milan, Italy) for 12 h, and stored at
−80 ◦C until use.

2.3. DNA Extraction, Amplification, and Sequencing

Total genomic DNA was extracted from 500 mg of lyophilized soil samples (96 soil
samples) using a FastDNA™ Spin kit (MP Biomedicals, Irvine, CA, USA), following the
manufacturer’s instructions and was quantified using a NanoDrop™ 8000 spectrophotome-
ter (Thermo Fisher Scientific, Waltham, MA, USA).

The library construction and sequencing were performed on the sequencing platform
of the Edmund Mach Foundation. Total genomic DNA was amplified using primers spe-
cific to either the bacterial and archaeal 16S rRNA gene or the fungal ITS1 region. The
specific bacterial primer set 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and the 806R (5′-
GGACTACNVGGGTWTCTAAT-3′) was used [37], with degenerate bases suggested by
Apprill et al. [38] and by Parada et al. [39]. Although no approach based on PCR amplifica-
tion is free from bias, this primer pair has been shown to guarantee good coverage of known
bacterial and archaeal taxa [40]. For the identification of fungi, the internal transcribed spacer 1
(ITS1) was amplified using the primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) [41] and
ITS2 (5′-GCTGCGTTCTTCATCGATGC-3′) [42]. All the primers included specific overhang
Illumina adapters for the amplicon library construction.

For the 16S V4 region, each sample was amplified by PCR using a 25-µL reaction with
oneµM of each primer. In more detail, 12.5µL of 2× KAPA HiFi HotStart ReadyMix and
10 µL forward and reverse primers were used in combination with 2.5µL of template DNA
(5–20 ng·µL−1). PCR reactions were executed using a GeneAmp PCR System 9700 (Thermo
Fisher Scientific) and the following cycling conditions: initial denaturation step at 95 ◦C for
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5 min (1 cycle); 28 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s; a final extension
step at 72 ◦C for 5 min (1 cycle).

For the ITS1 region, each sample was amplified by PCR using 25-µL reaction with
10µM of each primer. In more detail, 22µL of premix FastStart High Fidelity PCR System
(Roche) and 2µL forward and reverse primers were used in combination with 1µL of
template DNA (5–20 ng·µL−1). PCR reactions were executed using a GeneAmp PCR System
9700 (Thermo Fisher Scientific) and the following cycling conditions: initial denaturation
step at 95 ◦C for 3 min (1 cycle); 30 cycles at 95 ◦C for 20 s, 50 ◦C for 45 s, and 72 ◦C for 90 s;
final extension step at 72 ◦C for 10 min (1 cycle).

The amplification products were checked on 1.5% agarose gel and purified using a
CleanNGS kit (CleanNA, Waddinxveen, The Netherlands), following the manufacturer’s
instructions. Afterward, a second PCR was used to apply dual indices and Illumina se-
quencing adapters Nextera XT Index Primer (Illumina, Berlin, Germany), using seven cycles
of PCR (16S Metagenomic Sequencing Library Preparation, Illumina, Berlin, Germany).
The amplicon libraries were purified using a CleanNGS kit (CleanNA, Waddinxveen, The
Netherlands), and quality control was performed on a Typestation 2200 platform (Agilent
Technologies, Santa Clara, CA, USA). Finally, all barcoded libraries were pooled in an
equimolar manner and sequenced on an Illumina® MiSeq (PE300) platform (MiSeq Control
Software 2.5.0.5 and Real-Time Analysis software 1.18.54.0).

2.4. Bioinformatics and Statistical Analysis

Illumina reads were filtered with Bowtie2 v2.3.4.3 [43] to avoid the presence of Illumina
phiX contamination, and quality was preliminarily checked with FastQC v0.11.8 [44].
Primers were stripped using Cutadapt v1.18 [45]. Sequences were quality filtered, trimmed,
denoised, and amplicon sequence variants (ASVs) were generated with DADA2 v1.14 [46].
Denoised forward and reverse ASV sequences were merged and chimeras were removed.
Filtered ASVs were checked using Metaxa2 v2.2.1 [47] and ITSx v1.1.2 [48] for targeting the
presence of the V4 16S rRNA and ITS1 regions, in archaeal and bacterial sequences and
fungal sequences, respectively. Taxonomic assignment of 16S rRNA gene ASVs and ITS
based ASVs was performed using a RDP classifier, reimplemented in DADA2 against the
SILVA v138 database [49] and UNITE 8.2 database [50], respectively. BIOM objects with
bacterial and fungal counts, respectively, were built and imported into the R-4.0.3 statistical
environment for further analyses [51].

The data of the growth assessment of T. atroviride SC1 cfu counts (Figure 1) were
log10 transformed to simplify the data analysis, as is commonly the case for colony counts
to avoid data skewness. Bartlett’s test of homogeneity of variances and Shapiro–Wilk’s
normality test were used to check the normal distribution of the data. ANOVA and Tukey’s
HSD tests were performed on log10 transformed data with a normal distribution (test of
the evolution of treatments in time), and the non-parametric Kruskal–Wallis and Dunn
post-hoc (Benjamini–Hochberg p-adjustment method α = 0.05) tests were used otherwise
(comparing the cfu counts between treatments at each sampling point).

Bacterial and fungal count tables were filtered using the RAM R package, and rare
ASVs (relative abundance < 0.1%) were discarded. Relative abundance of taxa at different
taxonomic ranks was calculated with the RAM R package [52].

Alpha-diversity values were calculated adopting a multiple rarefaction method, imple-
mented in the rtk R package [53]. In detail, richness (observed ASVs) and diversity values
(Simpson’s index) were generated by averaging the results inferred after 999 rarefactions,
starting from a minimum number of 38,256 and 13,418 reads, for 16S rRNA gene and
ITS data, respectively. A regression analysis based on linear models was carried out on
the richness and diversity values, for each dataset, after inspection with the fitdistrplus
R package [54]. In more detail, a machine learning approach based on 9999 bootstrap
resampling was adopted to evaluate models in which factors (i.e., experiment, time, and
treatment) were considered only for their main effects or also with an interaction. The
performance of the models was assessed by means of RMSE (root mean squared error) and
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R-squared, which measure the prediction error and the proportion of variation explained
by each model, respectively [55]. An analysis of variance (ANOVA) followed, to evaluate
the linear model fit. A post-hoc analysis was carried out with pairwise comparisons, based
on the estimated marginal means (EMMs) as implemented in the emmeans R package [56].
Richness and diversity values were graphically represented as boxplots, using the ggplot2
R package (Figures 2 and 3) [57]. A confirmatory analysis based on recursive partition-
ing [58] was carried out by considering richness and diversity variables together in the
same model; with experiment, time, and treatment as factors (Figure S1).
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significant statistical differences between treatments, according to Dunn’s test (α = 0.05). Colony 
counts of the two experiment were pooled. 

  

Figure 1. The effect of beech wood pellets coated with Trichoderma atroviride SC1 and uncoated on
the Trichoderma spp. population in the soil at different sampling times post inoculation (D0: after
12h, D15: after 15 days, D30: after 30 days, D45: after 45 days, D60: after 60 days, and D90: after
90 days). Ctr: bulk soil; Trt1: soil with 10 g of beech wood pellets; Trt2: soil with T. atroviride SC1
conidial suspension (5 × 103 conidia·g−1 of soil); Trt3: soil with 10 g of T. atroviride SC1 coated beech
pellets (5 × 105 conidia·g−1 of beech wood pellets). At each sampling point, different letters indicate
significant statistical differences between treatments, according to Dunn’s test (α = 0.05). Colony
counts of the two experiment were pooled.

Beta diversity calculations were conducted after normalization with the median of
ratios method implemented in the DESeq2 R Bioconductor package [59]. Exploratory
non-metric multidimensional scaling (NMDS) ordinations were applied to Bray–Curtis
dissimilarities. NMDS ordinations were plotted using the ggvegan and ggplot2 R pack-
ages (Figure 4) [60]. A multivariate analysis based on PERMANOVA was performed
on Bray–Curtis dissimilarities applied to normalized bacterial and fungal count tables,
respectively (adonis function, vegan R package) [61]. To confirm the PERMANOVA results,
a multivariate generalized model (mGLM) was calculated, including all available factors
and based on a negative binomial distribution (confirmed by graphical inspection). The
model was assessed by analysis of deviance with a likelihood-ratio-test (manyglm function,
mvabund R package) [62]. ASVs that had abundances significantly different (p < 0.05)
in at least one factor were extracted from the mGLM results and were used to calculate
univariate non-parametric tests for each factor (multtest.gp function, RVAideMemoire
R package) [63]. The results of each rank test were corrected by false discovery rate (FDR),
and post-hoc pairwise comparisons were performed between the levels in each factor,
with a Dunn test followed by Benjamini–Hochberg adjustment (dunntest function, FSA
R package) [64]. Bacterial and fungal indicator ASVs, respectively, were collapsed at genus
level and relative abundances were plotted with the RAM R package (Figure 5).
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Figure 5. Relative abundance of the most important bacterial (A) and fungal (B) genera. E1and E2: two experiments
with four treatments at different sampling times (D0: after 12 h; D15: after 15 days; D90: after 90 days); Ctr: bulk soil;
Trt1: soil with 10 g of beech wood pellets; Trt2: soil with Trichoderma atroviride SC1 conidial suspension at the rate of
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pellets). Data of each replicate are presented in the histograms.
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3. Results
3.1. Impact of the Trichoderma atroviride SC1 Coated Beech Wood Carrier on the Growth of
Trichoderma spp. in Soil

Trichoderma atroviride SC1 DNA was not detected in the original bulk soil. Since the cfu
counting does not allow for distinguishing the species/strains of Trichoderma, T. atroviride
SC1 and the indigenous population of Trichoderma, are mentioned as Trichoderma spp.
population throughout the paper.

The Trichoderma spp. cfu counts increased rapidly in the first 30 days, until D45 in Ctr
and Trt1. For Ctr, the cfu counts were not significantly different at D15 and D30 compared to
D0, according to Dunn’s post-hoc test (p = 0.380; p = 0.080). Then at D45, the counts reached
levels significantly different from the ones registered at D0 and D15 (p = 0.001; p = 0.002).
No significant difference was observed between the cfu counts of the Trichoderma spp.
population at D60 compared to D30 (p = 0.074) and D45 (p = 0.370), respectively, while it
remained significant for D0 (p = 0.002) and D15 (p = 0.004). At the end of the experiment
(D90), a slight decrease in the population was observed (2.69 × 102 ± 102.87 cfu·g−1 of
soil) and a significant difference was recorded only with D0 (p = 0.021). For Trt1, the
colonies started to grow faster than Ctr, and a significant difference was detected starting
from D30 as compared to D0 (p = 0.010). The population of Trichoderma spp. continued to
grow and became significantly different from the levels observed at D30 a month later at
D60 (p = 0.009). The levels registered at D90 (1.00 × 103 ± 712.57 cfu·g−1 of soil) remained
significantly different from the cfu counts at D30, but not different from those of D45
(p = 0.275) and D60 (p = 0.338). The treatments Trt2 and Trt3, where T. atroviride SC1
was inoculated at the rate of 5 × 103 conidia·g−1 of soil, maintained the same level of
cfu count in the first 30 days compared to D0, with p = 0.065 and p = 0.206 for Trt2 and
Trt3, respectively. Then at D45, the population of Trichoderma spp. started to decline in
Trt2 (2.54 × 103 ± 689.00 cfu·g−1 of soil) and Trt3 (1.40 × 103 ± 681.09 cfu·g−1 of soil),
reaching levels significantly different from the ones registered at D15 (p = 0.003; 0.001),
and the same was observed between D60 and D30 (p = 0.012; p = 0.001). The population
at D90 was significantly lower than all the other sampling points for Trt2, except for D60
(p = 0.103), while no significant difference was observed between D45, D60, and D90 for
Trt3 (p = 0.057; p = 0.218).

Between treatments, at D0, there was a significant difference in the cfu counts between
Ctr/Trt1 and Trt2/Trt3 (H = 31.538, df = 3, p < 0.001), which persisted until D45. At D45, no
significant difference was observed between the counts of Ctr and Trt1 (p = 0.052), Trt1 and
Trt3 (p = 0.054), or Trt2 and Trt3 (p = 0.050). Trt2 and Trt3 were both significantly different
from Ctr (H = 29.067, df = 3, p < 0.001). Trt2 registered the highest cfu count among the
treatments (2.54 × 103 ± 689.82 cfu·g−1 of soil).

At D60 the cfu counts of Trt1 continued to rise and became significantly different
from the control (p = 0.003). The cfu counts in Trt3 continued to decrease and became
significantly different from the cfu counts in Trt2 (p = 0.011).

At D90, the population of Trichoderma spp. showed no statistical difference (p = 0.250; p = 0.140;
p = 0.040) between Trt1 (1.03× 103 ± 712.71 cfu·g−1 of soil), Trt2 (1.07× 103 ± 417.05 cfu·g−1 of
soil), and Trt3 (6.76× 102 ± 232.81 cfu·g−1 of soil), with cfu counts that were significantly higher
than the control (H = 23.766, df = 3, p < 0.001) (Figure 1).

3.2. Impact of the Trichoderma atroviride SC1 Coated Beech Wood Carrier on the Microorganisms
of the Soil

A total of 103,970.6 bacterial/archaeal reads and 86,077.48 fungal reads were obtained.
The most dominant bacterial phyla, in terms of relative abundance, were Proteobacteria
(34%), Crenarchaeota (10%), Actinobacteriota (10%), Bacteroidota (10%), and Acidobac-
teriota (10%). At genus level, Massilia was the most abundant, with 12%, followed by
Pontibacter, Sphingomonas, and Gaiella, with (2%) and finally Microvirga (1%). The fungal
taxa were dominated by Ascomycota (82%), then Basidiomycota (6%), and Mortierellomy-
cota (6%), followed by Chytridiomycota (3%) and Aphelidiomycota (3%). Mortierella (6%)
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was the most dominant fungal genus, followed by Fusarium (4%) and Cladorrhinum (4%),
and finally Gibberella (3%), then Stachybotrys (2%).

Bacterial and Fungal Richness and Diversity

The bacterial alpha diversity showed statistical differences in richness (observed ASVs)
between the different sampling time points for each treatment (F = 514.48, p < 0.001) and
between treatments (F = 45.94, p < 0.001). The increase in the bacterial richness occurred
faster for all treatments (15 days after the inoculation) compared to the control, which
showed a significant increase after 90 days (Figure 2). This shows that the introduction
of the carrier components, the incorporation of T. atroviride SC1 into the soil, and their
combined application enhanced the bacterial richness. At D90, the highest effect was
observed with Trt3, which presented the highest ASVs (680) among all treatments, while
no significant difference was observed between Trt1 and Trt2.

In contrast, the bacterial diversity (Simpson’s index) showed differences between
treatments at D0 only (F = 245.07, p < 0.001). The treatments where a carrier was applied
with or without T. atroviride SC1 (Trt1 and Trt3) affected the bacterial population community
and decreased its diversity, as is shown by the low Simpson’s values (0.88 and 0.87) for
Trt1 and Trt3, respectively. The addition of the carrier, which contains carbon and nitrogen
sources, clearly favored certain genera that are more adapted to those components and
decreased the less competent ones (Figure 2). Generally, the introduction of T. atroviride
SC1 did not affect the bacterial population and the most important factor that governed
the bacterial dynamics was the addition of the carrier (F = 61.40, p < 0.001).

The fungal alpha diversity showed significant differences in richness between the
different sampling time points for each treatment (F = 303.58, p < 0.001), but not between
treatments (F = 0.31, p = 0.81). The richness decreased in time for both control and treat-
ments, with no exceptions (Figure 3).

Simpson’s diversity index was significantly different for Trt1 compared to the other
treatments, including the control (F = 5.17, p < 0.001) (Figure 3). This shows the effect of
combining the addition of wood to the soil with the application of T. atroviride SC1. The
fungal diversity in the treatments where T. atroviride SC1 was applied with and without
wood pellets were not significantly different from the control (Figure 3). In contrast, the
fungal diversity in Trt1, which was supplemented only with wood, was significantly
different. This shows that adding T. atroviride SC1 can counterbalance the effects of the
wood on the fungal diversity. The addition of wood was the main cause for the differences
observed between treatments. The recursive partitioning analysis of the bacterial and
fungal richness and diversity confirmed the above-mentioned results (Figure S1).

Unsupervised non-metric multidimensional scaling (NMDS) ordinations applied on
Bray–Curtis dissimilarities showed that the dissimilarities observed among the bacterial
samples were grouped (Figure 4) according to the factors, time and treatment, while it
pooled the fungal communities only according to the factor, time (Figure 4). In fact, the
permutational multivariate analyses of variance (PERMANOVA) on Bray–Curtis dissim-
ilarities revealed that time was responsible for the biggest portion of the variation in
microbiome beta-diversity. The bacterial community differed very significantly according
to the factor time (F = 144.95, R2 = 0.56, p < 0.001) and treatment (F = 20.38, R2 = 0.11,
p < 0.001), as well as their interaction (F = 11.37, R2 = 0.13, p < 0.001), and less significantly
with the factor experiment (F = 3.47, R2 = 0.006, p = 0.015). The same was observed for
the fungal communities, which varied according to time (F = 21.99, R2 = 0.23, p < 0.001),
treatment (F = 8.59, R2 = 0.14, p < 0.001), the interaction between the two factors (F = 3.35,
R2 = 0.10, p = 0.001), and finally the factor experiment (F = 2.64, R2 = 0.014, p = 0.006). These
results indicate a high consistency of the effects of the treatments over time (T. atroviride
SC1 coated and uncoated wood pellets and T. atroviride SC1) on soil microbial communities.

Bacterial and fungal indicator ASVs that have significantly different abundances
(p < 0.05) in the factor time and treatment were extracted from the mGLM results. The
results of the Simpson’s bacterial diversity index correspond with an increase in the
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population of the genus Massilia, which was significantly different between the two groups
Ctr/Trt2 and Trt1/Trt3 (Figure 5). The results also revealed a significant increase in terms
of the relative abundances of the genera Pontibacter, Sphingomonas, Gaiella, Pedobacter, and
Microvirga (Figure 5).

For the fungal community, at D0, Trichoderma spp. were higher in Trt2 and Trt3
than in Ctr and Trt1, as expected. Contrarily to the cfu counts, however, this did not
change until the end of the experiment, according to Dunn’s post-hoc test. The carrier
(Trt1/Trt3) selectively and significantly increased the total ASV’s of Cystobasidium, Ascobolus,
Stachybotrys, Cladorrhinum, Preussia, and Stachylidium (Figure 5).

4. Discussion

Trichoderma spp. formulations are important, as they can delay the decline of the popu-
lation of the fungus, protecting conidia from soil fungistasis [65,66], by providing nutrients
to selectively stimulate their growth, or by combining both mentioned benefits [67]. In
our experiment, we tested the effect of a carrier based on lignocellulosic materials (beech
wood pellet supplemented with soy protein isolates) on the growth of T. atroviride SC1
in a sandy loam, and assessed the effect of such a carrier on the microbiota of the soil.
Since it was hard to distinguish colonies of our strain from the indigenous population in
the soil, we reported the results as the population of the total Trichoderma spp., instead of
T. atroviride SC1.

The Trichoderma population showed a steady growth in the Ctr and Trt1 for the first
30 to 45 days, then it stabilized. This growth can be explained by the addition of SDW,
which stimulated the indigenous population to germinate and exploit the soil organic
matter. This is in concordance with studies that show that water affects the microbial
growth in the soil [68–70]. Trt2, where T. atroviride SC1 was applied as an SDW conidial
suspension, showed the typical population decline that is reported in literature when
Trichoderma spp. are applied as conidia [4,35]. The population remained stable for 30 days,
then started to decline gradually until D90. This result is in concordance with [31], who
reported a decrease in the population of Trichoderma atroviride I-1237 after three weeks in
neutral clayey soils and after 13 weeks after its inoculation into an acidic sandy loam. Their
research showed that the decline of the population of Trichoderma spp. can be governed by
the physicochemical characteristics of a soil. In fact, since the growth of T. atroviride SC1
on wood has been demonstrated by previous studies [10,71], we expected the fungus to
grow to higher levels in Trt3 compared to Trt1 and Trt2; however, surprisingly, the total
Trichoderma population remained stable for 30 days and then declined to levels similar
to the ones registered with Trt1 and Trt2, which suggests a soil fungistatic effect that
inhibited the growth of T. atroviride SC1. The growth of T. atroviride SC1 in the soil can
be hindered by unfavorable soil conditions (pH 8 in our experiment), as it grows best in
acidic conditions [72]. This has also been reported in other studies, which showed that the
growth of Trichoderma spp. can be affected by soil texture and pH [73–75].

The carrier increased the Trichoderma spp. population in Trt1 steadily in the first 45
days and then it stabilized to levels that were not significantly different to those observed
in the treatments where T. atroviride SC1 was added with and without coated beech pellets.
Since Trt1 did not contain detectable levels of T. atroviride SC1 (since initially we tested the
soil for the presence of this fungal strain using specific primers [36]) the presence of other
competitive strains of Trichoderma spp. that are more efficient than our strain in degrading
wood is highly plausible. Competition with other Trichoderma spp. could have played an
important role in slowing down the growth of T. atroviride SC1 with the carrier in Trt3
as compared to Trt1, where the population of Trichoderma flourished in the first 45 days.
Generally, Trichoderma spp. compete with each other in the soil for wood colonization with
an effectiveness that depends on the species [76,77]. Several species have been reported
in the literature for their high cellulolytic activity, such as T. reesei, T. viride, T. harzianum,
T. virens, and T. longibrachiatum [78–80]. The difference that was observed between the
results of the cfu counts of Trichoderma spp. and the results of the ITS amplicon-based
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analysis is in concordance with previous studies, which reported that such differences
could be due to the fact that a dead propagule that still contains DNA does not develop
into a cfu [81].

Since soil experiments can be influenced by a complex of physicochemical factors
of a soil, such as temperature, texture, water availability, aeration, and light, as well as
other biological factors, consisting mainly of the distribution of microorganisms in the
soil and their interactions [69], we repeated the experiment twice. Our results show that
the experimental design consistently detected the differences occurring due to time and
treatment. The incorporation of T. atroviride SC1 did not affect the bacterial richness and
diversity. This is in concordance with other studies that reported a transient effect of
Trichoderma spp. on the microbial population [31,36,82,83]. The fungal richness, however,
decreased in all treatments, probably due to the growth of fungal genera that are more
competitive in growing in conditions either of low organic matter or on woody substrates.
Cordier and Alabouvette [31] observed the same effect with the introduction of T. atroviride
I-1237 on the fungal community; however, the change only lasted for three months, which
was the full length of our experiment. The fungal diversity also decreased in all treatments;
however, it decreased the most in Trt1, where pellets were introduced in the absence
of T. atroviride SC1. This suggests that the main driver of the change observed between
treatments was the introduction of non-coated beech wood pellets and that T. atroviride SC1
contributed in balancing the fungal diversity, probably by increasing the availability of
nutrients to other fungi. This is in concordance with Asghar and Kataoka [34], who found
that introducing organic amendments into the soil had a negative effect on the diversity of
the fungal community. Longa et al. [84] also reported a correlation between the increase
in the organic matter and the abundance of microbial functional groups with agricultural
importance, such as nitrogen fixing bacteria when soil was supplied with green manure.

In our study, the tested soil was rich in wood-degrading bacteria and fungi in all
treatments, as was demonstrated by the analysis of the top ten genera of bacteria and
fungi, in terms of relevant abundance. These analyses revealed a dominance of the genus
Massila for bacteria in all treatments, including the control. Massilia, which are saprophytic
and opportunistic and were significantly more abundant in the presence of the carrier
at D0. This can be explained by the early growth of these bacteria on wood pellets. In
fact, Oxalobacteraceae in general, and Massilia spp. in particular, are very active in the
early stages of bacterial succession in soils [85], and species of this genus can produce
cellulases [86,87], which can explain their initial growth on wood and soil amended with
fresh plant residues [88,89]. However, this effect is usually transient and only occurs
when sufficient carbon and energy sources are present, and before competition with other
microorganisms becomes limiting [87]. Overall, the carrier increased the bacterial richness
and had a transient effect on its diversity. This is in concordance with other studies
that showed that using inorganic nitrogen fertilizers in bulk soils affects their bacterial
composition [90]. Illescas et al. [91] found that inorganic fertilizers increased bacterial
genera with antagonistic activities, such as Sphingomonas and Pseudomonas, Kaistobacter,
and Streptomyces. We observed the same pattern with Sphingomonas and Pseudomonas,
but also Lysobacter, which was not reported in their study. Lysobacter spp., named after
their lytic effects on other microorganisms and which are often good biocontrol agents,
are Gram-negative bacteria that are frequently found in soils. Their increase could be a
response to the increase of other microorganisms or to the availability of a nutritional
substrate related to the treatments [92].

The carrier also enriched the presence of bacteria involved in the soil nitrogen cycle
such as Microvirga and Pedobacter, which confirms the results obtained by Longa et al. [84]
when soil was supplemented with green manure. These results suggest a selective effect of
a wood-based carrier of T. atroviride SC1. This selective effect was more visible for fungi.
In fact, non-coated beech wood pellets decreased both the richness and diversity of the
fungal population. This could be the result of promoting fungi that are more adapted to
the addition of wood, particularly in bulk soils [90], such as Mortierella, which was the
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most abundant genus. These fungi are considered good degraders of toxic pollutants, such
as pesticides and heavy metals [91,93,94], and they have potential for biocontrol [95–97].
They are also important plant growth promoters and can enhance soil conditions under salt
stress [98,99], but most importantly, they can degrade cellulose, hemicellulose, and organic
matter in periods that range from 30 to 430 days, depending on the substrate and the soil
conditions [100,101]. Tamayo-Vélez et al. [100] reported an optimal degradation rate of
organic matter by Mortierella 90 days after inoculation. These results can be compared to
what we have observed, as 90 days were sufficient to rank Mortierella spp. as the most
abundant fungi in the soil. This shows that wood pellets are a suitable substrate for
the growth of Mortierella spp. This might have caused the competition that prevented
Trichoderma spp. in general, and T. atroviride SC1 in particular, from thriving in the pots
supplemented with coated wood pellets.

Another genus that might have played an important role in the competition for
wood degradation is Cladorrhinum. Cladorrhinum spp. have been extensively reported
in agricultural soils [102,103]. They were found in soil as saprotrophs on dung or plant
material [104,105], or in roots as endophytes [106]. It is an ammonia fungus belonging to
the early successional phase of fungi involved in the saprotrophic litter decomposition in
soil [107]. Moreover, they are more efficient than Trichoderma for the degradation of hard-
wood [23,108]. This selective abundance of the carrier might be beneficial, as Gasoni and
Stegman de Gurfinkel [109] reported a potential antagonistic activity of Cladorrhinum spp.
against Rhizoctonia solani. In fact, this is not the only fungus found in our research that
can be effective against Rhizoctonia solani. Some species of the genus Stachybotrys, which
is also commonly found in soils and on cellulose [110,111], have a strong antagonistic
activity against R. solani through mycoparasitism, by the means of chitinases and β-1,3-
glucanases [110]. One of the species of this genus, namely, Stachybotrys chartarum was also
suspected to play a role in the development of human pulmonary diseases; however, the re-
sults are not yet conclusive [112,113]. Generally, drying pellets before coating, as suggested
in our protocol, would eliminate any potential development of unwanted molds that could
be harmful to animals or humans; however, further research is needed in different soil
types and with different wood species. The results of the selective abundance of beneficial
microbes is in concordance with Sani et al. [114], Fu et al. [115], and Zhang et al. [99], who
reported a decrease in the relative abundance of genera hosting phytopathogens such
as Neonectria and Fusarium, improved soil fertility, and an increase in the relative abun-
dance of plant growth-promoting rhizobacteria, respectively, when different Trichoderma
isolates where inoculated into the soil. In our research, the results of the two experiments
yielded more consistent results with bacteria compared to fungi. This could be explained
by the high competition between fungi in colonizing the woody substrate. The decreased
prevalence of wood degrading fungi in some samples was replaced by an increase in
the relative abundance of the genera Cordana, Cystobasidium, Zopfiella, Schizothecium, and
Ramophialophora, which might be due to the heterogeneous distribution of microorganisms
in the soil [69].

5. Conclusions

The incorporation of T. atroviride SC1 coated wood pellets in the soil enriched the
bacterial community and had a selective effect on the abundance of beneficial fungal species
that have biocontrol potential. Although a wider screening of a combination of different
wood and soil types is necessary to confirm this effect, these results are promising as they
reinforce the suitability of the use of wood pellets as carriers of Trichoderma spp., because,
in addition to being good growth substrates for the fungus, they have a mild effect on the
microbial community, as they induce temporary side effects on the bacterial community,
and favor the growth of fungal species with biocontrol potential. In addition, the carrier did
not increase any potential human or plant pathogens. Although wood pellets can be used
as carriers of conidia of Trichoderma spp., further studies are needed to assess their efficacy
against soil-borne pathogens and to optimize application conditions and dosages in order
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to reach an efficient biocontrol effect. Possible side-effects on the plant, e.g., phytotoxicity,
must also be tested.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jof7090751/s1, Figure S1: Recursive partitioning analysis of bacterial richness and diversity.
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