20 research outputs found

    Pyaneti: a fast and powerful software suite for multi-planet radial velocity and transit fitting

    Get PDF
    Transiting exoplanet parameter estimation from time-series photometry and Doppler spectroscopy is fundamental to study planets' internal structures and compositions. Here we present the code pyaneti, a powerful and user-friendly software suite to perform multi-planet radial velocity and transit data fitting. The code uses a Bayesian approach combined with an MCMC sampling to estimate the parameters of planetary systems. We combine the numerical efficiency of FORTRAN, the versatility of PYTHON, and the parallelization of OpenMP to make pyaneti a fast and easy to use code. The package is freely available at https://github.com/oscaribv/pyaneti.Comment: 15 pages, 6 figures, 2 tables. Accepted for publication in MNRA

    First description of Eucoleus garfiai (Gallego and Mas-Coma, 1975) in wild boar (Sus scrofa) in Italy

    Get PDF
    Eucoleus garfiai (syn. Capillaria garfiai) is a nematode infecting lingual tissue of domestic and wild swine. Prevalence data for this parasite are scant and often related to accidental findings, occurring only in Japan and a few European countries. In this study, an epidemiological survey was performed in order to identify E. garfiai in wild boar from the Campania region, southern Italy. A total of 153 wild boar carcasses were inspected over the course of two hunting seasons (2019–2020). Histological examinations were performed on tongue samples fixed and stained with haematoxylin and eosin. The scraping of dorsal tongue tissue was carried out to collect adult worms for parasitological examination. Out of 153 wild boars, 40 (26.1%, 95% CI: 19.8–33.6%) tested positive for helminths and/or eggs in tongue tissues. Parasites were identified morphologically and identification was confirmed by molecular analysis of the 18S rRNA gene, showing a 99% nucleotide match with E. garfiai sequences available in literature. No statistically significant differences were found according to age, sex nor hunting province. Our findings agree with previous histopathological data confirming the low pathogenic impact of this nematode. The present study represents the first report of E. garfiai in wild boar from Italy

    K2-137 b: an Earth-sized planet in a 4.3-hour orbit around an M-dwarf

    Get PDF
    We report the discovery from K2 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 hours, the second-shortest orbital period of any known planet, just 4 minutes longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, AO imaging, RV measurements, and light curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 +/- 0.09 Earth radii, and which must have a iron mass fraction greater than 0.45, orbits a star of mass 0.463 +/- 0.052 Msol and radius 0.442 +/- 0.044 Rsol.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune

    Get PDF
    We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 d. We model the activity-induced radial velocity variations of the host star with a multidimensional Gaussian Process framework and detect a planetary signal of 10.6 \ub1 3.0 m s−1, which matches the transit ephemeris, and translates to a planet mass of 21.8 \ub1 6.2 M. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04+−006661 g cm−3, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011–1012 g s−1 due to the high level of radiation it receives from its host star

    Radial velocity confirmation of K2-100b: A young, highly irradiated, and low-density transiting hot Neptune

    Get PDF
    We present a detailed analysis of HARPS-N radial velocity observations of K2-100, a young and active star in the Praesepe cluster, which hosts a transiting planet with a period of 1.7 days. We model the activity-induced radial velocity variations of the host star with a multi-dimensional Gaussian Process framework and detect a planetary signal of 10.6±3.0m s−110.6 \pm 3.0 {\rm m\,s^{-1}}, which matches the transit ephemeris, and translates to a planet mass of 21.8±6.2M⊕21.8 \pm 6.2 M_\oplus. We perform a suite of validation tests to confirm that our detected signal is genuine. This is the first mass measurement for a transiting planet in a young open cluster. The relatively low density of the planet, 2.04−0.61+0.66g cm−32.04^{+0.66}_{-0.61} {\rm g\,cm^{-3}}, implies that K2-100b retains a significant volatile envelope. We estimate that the planet is losing its atmosphere at a rate of 1011−1012 g s−110^{11}-10^{12}\,{\rm g\,s^{-1}} due to the high level of radiation it receives from its host star.O.B. and S.Ai. acknowledge support from the UK Science and Technology Facilities Council (STFC) under grants ST/S000488/1 and ST/R004846/1. J.K., S.G. and A.P.H acknowledges support by Deutsche Forschungsgemeinschaft (DFG) grants PA525/18-1 and PA525/19-1 and HPA 3279/12-1 within the DFG Schwerpunkt SPP 1992, Exploring the Diversity of Extra-solar Planets. L.M. acknowledges support from PLATO ASI-INAF agreement n.2015-019-R.1-2018. S.Al. acknowledges the support from the Danish Council for Independent Research through the DFF Sapere Aude Starting Grant No. 4181-00487B, and the Stellar Astrophysics Centre which funding is provided by The Danish National Research Foundation (Grant agreement no.: DNRF106). This work is partly supported by JSPS KAKENHI Grant Numbers JP18H01265, JP18H05439, 15H02063, and 18H05442 and JST PRESTO Grant Number JPMJPR1775. M.C.V.F. and C.M.P. gratefully acknowledge the support of the Swedish National Space Agency (DNR 174/18)

    K2-290: A warm Jupiter and a mini-Neptune in a triple-star system

    Get PDF
    We report the discovery of two transiting planets orbiting K2-290 (EPIC 249624646), a bright (V = 11.11) late F-type star residing in a triple-star system. It was observed during Campaign 15 of the K2 mission, and in order to confirm and characterize the system, follow-up spectroscopy and AO imaging were carried out using the FIES, HARPS, HARPS-N, and IRCS instruments. From AO imaging and Gaia data we identify two M-dwarf companions at a separation of 113 \ub1 2 and 2467+−177155 au. From radial velocities, K2 photometry, and stellar characterization of the host star, we find the inner planet to be a mini-Neptune with a radius of 3.06 \ub1 0.16 R and an orbital period of P = 9.2 d. The radius of the mini-Neptune suggests that the planet is located above the radius valley, and with an incident flux of F ∼ 400 F, it lies safely outside the super-Earth desert. The outer warm Jupiter has a mass of 0.774 \ub1 0.047 MJ and a radius of 1.006 \ub1 0.050 RJ, and orbits the host star every 48.4 d on an orbit with an eccentricity e < 0.241. Its mild eccentricity and mini-Neptune sibling suggest that the warm Jupiter originates from in situ formation or disc migration

    Technical properties of new agrotextile fabrics improving vineyard microclimate, table grape yield and quality

    No full text
    Light, temperature and humidity are major environmental factors to control in order to achieve high table grape yield and quality, especially in vineyards with overhead canopies protected by plastic covers. The overall covering effect is often not-well understood: it is related to final air/soil microclimate that, in turn, depends mainly on technical properties of cover materials. Two new agrotextile plastic fabrics were tested to evaluate their effects on vineyard microclimate and grape yield/quality. Two plots were covered with two types of transparent sheets apt to advance berry ripening: a new PE fabric (Coverlys®, E), and a PE based reference commercial film (R). Moreover, a new white reflective woven groundcover (Lumilys®, G) was laid out on some inter-rows of each plot (E+G, R+G). Air/soil microenvironment, vine phenology, shoot growth and berry ripening were monitored. Optical properties of E and R were analysed. The E cover showed a higher IRlong retention, UV transmittance, and light diffusivity; R showed a higher transmittance to PAR and IRshort. Air temperature and humidity, vine growth and phenology were similar for both plots, indicating a compensatory balance among the radiometric properties that influence thermal regime. The groundcover, compared to bare soil, intensified PAR reflection, lowered soil temperature, improved soil humidity. In the first year, Coverlys® enhanced berry weight (+10%) and, slightly, the theoretical yield, possibly due to more diffuse light that, being better distributed into the canopy, improve light photosynthetic efficiency. In the second year, Lumilys® increased bunch weight and productivity by 18%, thanks to a greater large berry percentage likely related to the improved soil humidity and light environment. Coverlys® plus Lumilys® intensified skin colour and phenol contents, that are known to increase with high PAR and UV irradiance

    Technical properties of new agrotextile fabrics improving vineyard microclimate, table gape yield and quality.

    No full text
    Light, temperature and humidity are major environmental factors to control in order to achieve high table grape yield and quality, especially in vineyards with overhead canopies protected by plastic covers. The overall covering effect is often not-well understood: it is related to final air/soil microclimate that, in turn, depends mainly on technical properties of cover materials. Two new agrotextile plastic fabrics were tested to evaluate their effects on vineyard microclimate and grape yield/quality. Two plots were covered with two types of transparent sheets apt to advance berry ripening: a new PE fabric (Coverlys®, E), and a PE based reference commercial film (R). Moreover, a new white reflective woven groundcover (Lumilys®, G) was laid out on some inter-rows of each plot (E+G, R+G). Air/soil microenvironment, vine phenology, shoot growth and berry ripening were monitored. Optical properties of E and R were analyzed. The E cover showed a higher IRlong retention, UV transmittance, and light diffusivity; R showed a higher transmittance to PAR and IRshort. Air temperature and humidity, vine growth and phenology were similar for both plots, indicating a compensatory balance among the radiometric properties that influence thermal regime. The groundcover, compared to bare soil, intensified PAR reflection, lowered soil temperature, improved soil humidity. In the first year, Coverlys® enhanced berry weight (+10%) and, slightly, the theoretical yield, possibly due to more diffuse light that, being better distributed into the canopy, improve light photosynthetic efficiency. In the second year, Lumilys® increased bunch weight and productivity by 18%, thanks to a greater large berry percentage likely related to the improved soil humidity and light environment. Coverlys® plus Lumilys® intensified skin color and phenol contents, that are known to increase with high PAR and UV irradiance
    corecore