290 research outputs found

    Prediction in Photovoltaic Power by Neural Networks

    Get PDF
    The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operator levels. In this paper, we present three techniques based on neural and fuzzy neural networks, namely the radial basis function, the adaptive neuro-fuzzy inference system and the higher-order neuro-fuzzy inference system, which are well suited to predict data sequences stemming from real-world applications. The preliminary results concerning the prediction of the power generated by a large-scale photovoltaic plant in Italy confirm the reliability and accuracy of the proposed approaches

    Oxidative stress in the pathogenesis of systemic scleroderma: An overview

    Get PDF
    Systemic sclerosis (SSc) is a rare disorder of the connective tissue characterized by fibrosis of the skin, skeletal muscles and visceral organs. Additional manifestations include activation of the immune system and vascular injury. SSc causes disability and death as the result of end-stage organ failure. Two clinical subsets of the SSc are accepted: limited cutaneous SSc (lc-SSc) and diffuse cutaneous SSc (dc-SSc). At present, the aetiology and pathogenesis of SSc remain obscure, and consequently, disease outcome is unpredictable. Numerous studies suggest that reactive oxidizing species (ROS) play an important role in the pathogenesis of scleroderma. Over the years, several reports have supported this hypothesis for both lc-SSc and dc-SSc, although the specific role of oxidative stress in the pathogenesis of vascular injury and fibrosis remains to be clarified. The aim of the present review was to report and comment the recent findings regarding the involvement and role of oxidative stress in SSc pathogenesis. Biomarkers proving the link between ROS and the main pathological features of SSc have been summarized

    Sensory and Biochemical Characterization of Novel Drinks Based on Tomato Juice

    Get PDF
    In these last years, consumers’ choices are being directed towards healthier food and beverages with an increasing demand for functional products. In this study, we investigated the sensory and biochemical properties of novel drinks based on tomato juice. To this purpose, different blends were formulated mixing fresh tomato juice with other fruit juices and nectars in different proportions and then assayed to investigate their sensory (panel test), compositional and biochemical characteristics. Our results indicated that it is possible to formulate tasty drinks based on tomato juice with improved nutritional properties. The combinations of red fruits/tomato (60/40 v/v) and red fruits/orange/tomato (40/30/30 v/v/v) showed a sugar content lower than those of different soft drinks on the market including energy drinks, and suitable lycopene levels as well. Interestingly, the blended red fruits/orange/tomato had a greater number of polyphenols and vitamin C, a softer tomato flavour and high sensory appreciation. High pasteurization (90ºC,7 min), performed to increase storability, did not significantly affect sensory and biochemical properties of drinks. These achievements may be useful to modulate tomato flavour release and consumer acceptability of novel drinks based on tomato juice

    Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells

    Get PDF
    Sirtuin 6 (SIRT6) is a member of the NAD+-dependent class III deacetylase sirtuin family, which plays a key role in cancer by controlling transcription, genome stability, telomere integrity, DNA repair, and autophagy. Here we analyzed the molecular and biological effects of UBCS039, the first synthetic SIRT6 activator. Our data demonstrated that UBCS039 induced a time-dependent activation of autophagy in several human tumor cell lines, as evaluated by increased content of the lipidated form of LC3B by western blot and of autophagosomal puncta by microscopy analysis of GFP-LC3. UBCS039-mediated activation of autophagy was strictly dependent on SIRT6 deacetylating activity since the catalytic mutant H133Y failed to activate autophagy. At the molecular level, SIRT6-mediated autophagy was triggered by an increase of ROS levels, which, in turn, resulted in the activation of the AMPK-ULK1-mTOR signaling pathway. Interestingly, antioxidants were able to completely counteract UBCS039-induced autophagy, suggesting that ROS burst had a key role in upstream events leading to autophagy commitment. Finally, sustained activation of SIRT6 resulted in autophagy-related cell death, a process that was markedly attenuated using either a pan caspases inhibitor (zVAD-fmk) or an autophagy inhibitor (CQ). Overall, our results identified UBCS039 as an efficient SIRT6 activator, thereby providing a proof of principle that modulation of the enzyme can influence therapeutic strategy by enhancing autophagy-dependent cell death

    Targeting lysine deacetylases (KDACs) in parasites

    Get PDF
    Due to an increasing problem of drug resistance among almost all parasites species ranging from protists to worms, there is an urgent need to explore new drug targets and their inhibitors to provide new and effective parasitic therapeutics. In this regard, there is growing interest in exploring known drug leads of human epigenetic enzymes as potential starting points to develop novel treatments for parasitic diseases. This approach of repurposing (starting with validated targets and inhibitors) is quite attractive since it has the potential to reduce the expense of drug development and accelerate the process of developing novel drug candidates for parasite control. Lysine deacetylases (KDACs) are among the most studied epigenetic drug targets of humans, and a broad range of small-molecule inhibitors for these enzymes have been reported. In this work, we identify the KDAC protein families in representative species across important classes of parasites, screen a compound library of 23 hydroxamate- or benzamide-based small molecules KDAC inhibitors, and report their activities against a range of parasitic species, including the pathogen of malaria (Plasmodium falciparum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis and Haemonchus contortus). Compound activity against parasites is compared to that observed against the mammalian cell line (L929 mouse fibroblast) in order to determine potential parasite-versus-host selectivity). The compounds showed nanomolar to sub-nanomolar potency against various parasites, and some selectivity was observed within the small panel of compounds tested. The possible binding modes of the active compounds at the different protein target sites within different species were explored by docking to homology models to help guide the discovery of more selective, parasite-specific inhibitors. This current work supports previous studies that explored the use of KDAC inhibitors in targeting Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to address the challenges of targeting specific parasitic diseases while limiting host toxicity

    Characterization of fast-twitch and slow-twitch skeletal muscles of calsequestrin 2 (CASQ2)-knock out mice: unexpected adaptive changes of fast-twitch muscles only

    Get PDF
    This study investigates the functional role of calsequestrin 2 (CASQ2) in both fast-twitch and slow-twitch skeletal muscles by using CASQ2 12/ 12 mice; CASQ2 is expressed throughout life in slow-twitch muscles, but only in the developmental and neonatal stages in fast-twitch muscles. CASQ2 12/ 12 causes increase in calsequestrin 1 (CASQ1) expression, but without functional changes in both muscle types. CASQ2 12/ 12 mice have ultrastructural changes in fast-twitch muscles only, i.e., formation of pentads and stacks in the sarcoplasmic reticulum

    Hypoxia inducible factor-1β regulates a pro-invasive phenotype in acute monocytic leukemia

    Get PDF
    Hypoxia inducible transcription factors (HIFs) are the main regulators of adaptive responses to hypoxia and are often activated in solid tumors, but their role in leukemia is less clear. In acute myeloid leukemia (AML), in particular, controversial new findings indicate that HIF-1β can act either as an oncogene or a tumor suppressor gene, and this may depend on the stage of leukemia development and/or the AML sub-type. In this study, we find that HIF-1β promotes leukemia progression in the acute monocytic leukemia sub-type of AML through activation of an invasive phenotype. By applying a list of validated HIF-1β-target genes to different AML sub-types, we identified a HIF-1β signature that typifies acute monocytic leukemia when compared with all other AML sub-types. We validated expression of this signature in cell lines and primary cells from AML patients. Interestingly, this signature is enriched for genes that control cell motility at different levels. As a consequence, inhibiting HIF- 1β impaired leukemia cell migration, chemotaxis, invasion and transendothelial migration in vitro, and this resulted in impaired bone marrow homing and leukemia progression in vivo. Our data suggest that in acute monocytic leukemia an active HIF-1β-dependent pro-invasive pathway mediates the ability of leukemic cells to migrate and invade extramedullary sites and may be targeted to reduce leukemia dissemination

    Digital interaction: where are we going?

    Get PDF
    In the framework of the AVI 2018 Conference, the interuniversity center ECONA has organized a thematic workshop on "Digital Interaction: where are we going?". Six contributions from the ECONA members investigate different perspectives around this thematic

    Age as a risk factor in the occurrence of pneumothorax after transthoracic fine needle biopsy: Our experience

    Get PDF
    AbstractTransthoracic needle biopsy (TTNB) of the lung is a well-established technique for diagnosing many thoracic lesions, and is an important alternative to more invasive surgical procedures. Complications of TTNB include pneumothorax, hemoptysis, hemothorax, infection, and air embolism, with the most common complication as pneumothorax. From June 2011 to June 2014 we performed a prospective study of 188 patients who underwent TTNB with CT guidance at University Hospital of Salerno, Italy. Pneumothorax occurred in 14 of 188 biopsies (7.45%). With the respect of age of patients pneumothorax occurred more frequently in patients aged 60–70 years, while it was less frequent in younger (<60 years) and older patients (>70 years). In conclusion, data of our prospective study documented that CT-guided TTNB is a safe and reliable procedure in elderly patients with suspected chest malignancy and is well tolerated
    • …
    corecore