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RESEARCH ARTICLE
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Abstract
Due to an increasing problem of drug resistance among almost all parasites species ranging

from protists to worms, there is an urgent need to explore new drug targets and their inhibitors

to provide new and effective parasitic therapeutics. In this regard, there is growing interest in

exploring known drug leads of human epigenetic enzymes as potential starting points to

develop novel treatments for parasitic diseases. This approach of repurposing (starting with

validated targets and inhibitors) is quite attractive since it has the potential to reduce the

expense of drug development and accelerate the process of developing novel drug candi-

dates for parasite control. Lysine deacetylases (KDACs) are among the most studied epige-

netic drug targets of humans, and a broad range of small-molecule inhibitors for these

enzymes have been reported. In this work, we identify the KDAC protein families in represen-

tative species across important classes of parasites, screen a compound library of 23 hydro-

xamate- or benzamide-based small molecules KDAC inhibitors, and report their activities

against a range of parasitic species, including the pathogen of malaria (Plasmodium falcipa-
rum), kinetoplastids (Trypanosoma brucei and Leishmania donovani), and nematodes (Brugia
malayi, Dirofilaria immitis andHaemonchus contortus). Compound activity against parasites

is compared to that observed against the mammalian cell line (L929mouse fibroblast) in order

to determine potential parasite-versus-host selectivity). The compounds showed nanomolar

to sub-nanomolar potency against various parasites, and some selectivity was observed

within the small panel of compounds tested. The possible bindingmodes of the active com-

pounds at the different protein target sites within different species were explored by docking to

homology models to help guide the discovery of more selective, parasite-specific inhibitors.

This current work supports previous studies that explored the use of KDAC inhibitors in target-

ing Plasmodium to develop new anti-malarial treatments, and also pioneers experiments with

these KDAC inhibitors as potential new anthelminthics. The selectivity observed begins to

address the challenges of targeting specific parasitic diseases while limiting host toxicity.
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Author Summary

Due to pandemic drug resistance in the treatment of parasitic infections, there is an urgent
need to identify novel drug targets and their associated drug compounds. Although “drug
repurposing”, i.e. the application of known drugs and compounds to new indications such
as infectious diseases, provides a cost effective approach in the development of novel ther-
apeutics, selectivity is one of the major obstacles to overcome in getting such compounds
into clinical trials as anti-parasitic drugs. Using the lysine deacetylases (KDACs) as an
example, we explored the activities of a panel of known inhibitors against the KDAC tar-
gets in a range of parasitic organisms. The computational study of their binding modes to
the targets (by docking the compounds to the homology models within different organ-
isms in comparison with the human proteins) helps to rationalize the different activities
observed and provide insight on the optimization of lead compounds to improve selectiv-
ity. Our work provides support of “drug repurposing” in the treatment of parasitic dis-
eases, and demonstrates the necessity of optimizing these leads for the ultimate goal of
preparing them for clinical use.

Introduction
Neglected tropical diseases are the most common infections of the poorest populations around
the globe, causing massive burdens on the countries’ general population and inhibiting eco-
nomic development [1]. Treatments for these diseases usually rely on a single drug, or limited
options of drugs. Most drugs used for treating neglected diseases are quite old, have unknown
mechanisms of action, and often have limited effectiveness with poor safety profiles. Further-
more, drug resistance has been observed following the treatment of almost all parasitic patho-
gens, including protists, helminthes (roundworms) and Platyhelminthes (flatworms) [2].
Parasitic genome sequencing is now being exploited to help accelerate the development of
much-needed compounds with novel mechanisms of action.

Lysine deacetylase (KDACs) is a more specific term for enzymes that remove the e-acetyl
group from lysine side chains, and have emerged as an important class of drug targets with the
potential to treat a variety of diseases in human, ranging from psychiatric diseases and neuro-
degenerative diseases to cancer [3, 4]. Given the significance of KDACs in epigenetic modula-
tion, numerous small compounds have been developed to inhibit their activity, originally
directed at altering chromatin structure and thus modulating gene expression [5]. In humans,
KDACs belong to a large family with 18 members [6] divided into the Zn-dependent (Class I
and Class II) and NAD-dependent (Class III) enzymes. The Zn-dependent enzymes have been
the focus of intense research since they compose the majority of the KDAC family members
and are the primary targets of the known inhibitors [7]. In light of “drug repurposing” for the
treatment of parasitic diseases [8, 9], KDACs have been identified as an emerging drug target
in all the major human parasitic pathogens [10], but no systematic characterization has been
conducted to date, except in Plasmodium [11]. Considerable efforts were also made to utilize
the collected information of the known KDAC inhibitors to explore the potential of targeting
orthologs in the parasitic pathogens, ranging from P. falciparum [12–15] to Schistosoma man-
soni [16, 17]. Andrews et al. have pursued KDAC inhibitors as antimalarial drugs [12, 18, 19];
One of their studies presents comparative gene expression profiling of P. falciparum in
response to exposure to three different KDAC inhibitors [20]. Despite structural similarity
between the three inhibitors, diverse transcriptional effects were observed in the study, and
were attributed to possibly subtle differences in their inhibition of KDAC isoforms, or cellular
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distribution. Marek et al. [16] recently reported that lysine deacetylase 8 from S.mansoni
(smKDAC8), the most expressed class I KDAC isoform in this organism, was a functional ace-
tyl-L-lysine deacetylase with an essential role in parasite infectivity. Crystal structures were
obtained for different inhibitors bound to smKDAC8, and their binding modes were compared
for the optimization of the lead inhibitor, in order to achieve better potency and selectivity for
smHDAC8 [17]. In a more recent study, many KDAC inhibitors that are currently in clinical
trials for oncology were evaluated as therapeutic leads to target the kinetoplastid Trypanosoma
brucei for human African trypanosomiasis (HAT) [21]. These inhibitors were found to be
moderately to strongly potent in blocking proliferation of blood-stage T. brucei in culture; how-
ever, none of these drugs were lethal to cultured parasites when tested at human-tolerated
doses. This again confirms that parasitic selectivity is the major issue to address before repur-
posing these drugs as anti-parasitic therapeutics [8, 10]. Similar observations were also made in
other work [22]. Most of the studies to date have focused on a single enzyme isoform (or at the
cellular level for the target parasite), and have neglected to explore the potential interaction of
inhibitors acting on different KDAC orthologs and isoforms, in particular, the human ortho-
log/isoforms. In pursuing parasitic-specific or selective KDAC inhibitors, a systematic evalua-
tion of the KDAC targets as well as their interactions with small molecular inhibitors is
warranted to gain better insights at the molecular level for the improvement of inhibitor
selectivity.

It should be noted that lysine deacetylases are generally referred to as histone deacetylases
(HDACs; a historical imperative, as epigenetic modification of histones was described in 1964
by Allfrey et al. [23]), but it has been shown by proteomics that over 1700 proteins in cells
besides histones undergo dynamic acetylation [3]. Thus, here, we use the more accurate termi-
nology of lysine deacetylase (KDAC), acetylase (KAT) and methylase (KMT).

In this work, we took advantage of the genomes (deduced proteomes) of many parasite spe-
cies (resulting from recently-emerging sequencing technologies) to characterize the KDAC
family in parasites, including the less frequently-studied nematode species. KDAC family
members within these species were characterized using an orthology-based approach. Most
importantly, known human KDAC inhibitors were screened for activity against a few represen-
tative parasite species including the pathogen of malaria (Plasmodium falciparum), kinetoplas-
tids (T. brucei and Leishmania donovani), and nematodes (Brugia malayi, Dirofilaria immitis
andHaemonchus contortus). Activity observed in vitro against these parasites was compared
with that observed for toxicity with a mammalian cell line to determine the potential for host-
versus-parasite selectivity. We also examined potential molecular mechanisms by which active
compounds could be acting on the targets. This work provides some perspective on the pros-
pect of targeting KDACs in parasites and paves the way for developing more selective KDAC
ligands as novel drugs to control parasitic infections of humans and animals.

Methods

Data Collection
Whole proteome data from 26 eukaryotic species were collected. The datasets were comprised
of 11 species of nematodes, 4 species of Platyhelminthes, 5 species of protists (kinetoplastids
and pathogen of malaria) and 6 species of hosts/outgroups. Data were downloaded as follows:
for the outgroups,Homo sapiens andMus musculus were from Ensembl [24] release 67; and
Bos taurus, Canis lupus familiaris, Sus scrofa and Ovis aries were from Genbank [25] release
102, 102, 103 and 100 respectively. For the nematodes, Caenorhabditis elegans and Brugia
malayi were fromWormbase [26] WS230; Trichinella spiralis, Dirofilaria immitis, Ascaris
suum, Haemonchus contortus and Necator americanus were from published data [27–31].
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Trichuris muris was from the Sanger Institute release (ftp://ftp.sanger.ac.uk/pub/pathogens/
Trichuris/muris/). Loa was from Broad Institute release (http://www.broadinstitute.org). The
other 2 nematode species, Ancylostoma ceylanicum and Trichuris suis were from our in-house
sequencing datasets. For the Platyhelminthes, Schistosoma japonicum was from Chinese
National Human Genome Center at Shanghai (http://lifecenter.sgst.cn/schistosoma/en/
schistosomaCnIndexPage.do#Download); Schistosoma mansoni was from the Sanger Institute
release (ftp://ftp.sanger.ac.uk/pub/pathogens/Schistosoma/mansoni/genome/gene_predic-
tions/GeneDB_Smansoni_Proteins.v4.0g.gz, retrieved on 02/29/2009); Schistosoma haemato-
bium was downloaded from SchistoDB (http://SchistoDB.net) [32] on 02/01/2012; and
Clonorchis sinensis was downloaded from NCBI (NCBI bioproject 72781 [33]). All the kineto-
plastids (Trypanosoma brucei, Trypanosoma cruzi, Leishmania major and Leishmania dono-
vani) were downloaded from TriTrypDB (http://tritrypdb.org) [34] on 01/07/2014 (release
6.0). Plasmodium falciparum was downloaded from NCBI (ftp://ftp.ncbi.nih.gov/genomes/
Protozoa/Plasmodium_falciparum/) on 01/07/2014. Isoforms of these downloaded sequences
were examined against the coding genes, and only the longest ones were kept when applicable.

Protein Family Definition and Identification of KDAC Protein Families
Protein families (orthologous groups) were defined utilizing the Markov cluster algorithm [35]
of the OrthoMCL package [36, 37] with an inflation factor 1.5 based on the proteomes. Each
protein family consists of at least two proteins from one or more species. The gene annotations
of KDAC proteins for human in Ensembl, as well as those reported in literature for the patho-
gens malaria, toxoplasmosis, trypanosomiasis, schistosomiasis and leishmaniasis [10] were
used to identify and manually curate the KDAC protein families. The number of proteins in
each of these protein families was used to cluster the 26 species, using Manhattan clustering
with average linkage using the software package GENE-E (http://www.broadinstitute.org/
cancer/software/GENE-E/). A heatmap based on orthologous protein data was generated in
MS Excel Version 2010.

Experimental Compound Screening in Parasitic Species and
Mammalian Cell Line
A representative selection of 20 compounds (Fig 1) from a library of several hundred KDAC
inhibitors that were synthesized in the Mai laboratory at the Sapienza Universita in Rome was
screened. Additionally, largazole and two analogs were supplied by Prof. Robert Williams’ lab-
oratory at Colorado State University. The compounds were selected based on the following cri-
teria: 1). Known KDAC inhibitors which have been well studied and characterized in human
studies, usually used as controls, e.g. GRM1 (SAHA), GRM2 (Tubastatin), and GRM3 (Entino-
stat); 2). Cyclic depsipeptide based, class I-selective KDAC inhibitors and their analogs, e.g.
SD-L-148 (Largazole), SD-L-256, JMF-1080; 3). Other hydroxamate- or benzamide-based
small molecules which have been shown to be human KDAC inhibitors in purified enzyme-
based assays.

Compounds were tested against 3 parasite groups (2 roundworms, 2 protists and malaria,
Table 1) and a mammalian cell line (L929 mouse fibroblast; NCTC clone 929 [L cell, L-929,
derivative of Strain L] (ATCC CCL-1) was obtained from ATCC). Compound screening
against roundworms was conducted using three organisms with very different modes of para-
sitism: the blood feeding and gut dwelling H. contortus, and the animal and human tissue-
dwelling filarial nematodes D. immitis and B.malayi. Experimental procedures were described
in previous studies [38, 39]. The kinetoplastids (T. brucei strain S427 and L. donovani strain
MHOM/SD/00/LS) viability assays were conducted with exponentially growing
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Fig 1. Chemical structures of compounds used in parasite screening assays.

doi:10.1371/journal.pntd.0004026.g001
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trypomastigotes, oraxenic amastigotes, for each species respectively in 96-well plates using
automated liquid-handling equipment. Test compounds in DMSO were added to each well at
2–5 μM for T. brucei and 5–10 μM for L. donovani followed by incubation with the parasite for
72 hours at 37°C with 5% CO2. Known anti-trypanosomal compounds, i.e. pentamidine and
suramin, were included in each plate to serve as positive controls. Parasite viability was deter-
mined by addition of resazurin and evaluation of plates using a fluorescent plate reader. Com-
pounds showing�75% inhibition in primary assays were selected and titrated to confirm their
activity and to generate IC50 values. Activity/base protocols were used to calculate IC50 values
and generate quality control parameters for each plate. Compounds with IC50 � 1 μM for T.
brucei and IC50s� 5 μM for L. donovani were tested versus mammalian cells to determine par-
asite versus host-cell selectivity. A P. falciparum viability assay [40] was conducted with the
3D7 strain of P. falciparum known to be sensitive to all antimalarial drugs. Assays were per-
formed in 96-well microtiter plates, and each well contained 100 μl of parasite culture main-
tained in media supplemented with human red blood cells (0.5% parasitemia, 2.5%
hematocrit) in a humidified atmosphere at 37°C, 5% O2 and 5% CO2. Test compounds in
DMSO were added to each well at 2–5 μM. After incubation, 85% of the supernatant was

Table 1. Compound screening in host cells and parasites. Only measured activities were reported in the table, in the units of nM. The vertical line in the
table separates host and parasites. Abbreviation used: CYT vt: cytotoxicity viability assay; Endoparasites_DR: endoparasites dose response assay; HAT vt:
Human African trypanosoma viability assay; LEI axe: Leishmania axenic amastigote assay; MAL vt: Malaria viability assay. L929: L929 mouse fibroblast;
TbbS427: T. brucei strain S427; Ld1S: L. donovani strainMHOM/SD/00/LS; PfDd2: P. falciparum 3D7 strain.

Assay CYT vt Endoparasites_DR HAT vt LEI axe MAL vt

Cell line / Species L929 B. malayi D. immitis H. contortus TbbS427 Ld1S PfDd2
Timepoint 5 day 72 hour 96 hour 72 hour 72 hour 15 minute

MC2984

SDM141

SDM146

MC2727a* 2.35 0.96

MC2726* 1.92 0.189

MC2625* 0.311 1.18 >5 0.022

MC2664

MC2780* 4.81 2.53 8.14 0.623 0.473 0.056

MC2776* >10 4.39 >10

MC3031* 0.555 0.267 >5

MC3004

MC3079

MC3050

MC1742* 1.51 <0.01

MC1862* 7.12 1.15

MC2126* 1.76 0.441 >5 1.92

MC2129

JMF-1080

SD-L-256 0.333 >10 >10 0.9

SD-L-148 0.101 7.1

GRM1 0.155 1.81 >5 0.152

GRM2* 6.22 2.7 >5

GRM3

* compounds with lower activity in at least one parasite species compared to L929.

doi:10.1371/journal.pntd.0004026.t001
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removed and cells were washed with PBS. A DNA-specific dye (SYBR Green or DAPI) was
added in the presence of lysis agents, saponin and Triton X-100. Plates were incubated for 15
min and then read in a fluorescent microplate reader. Compounds showing�75% inhibition
in primary assays were cherry-picked and titrated to confirm activity and generate IC50 values.
Activity/Base protocols were used to calculate IC50 values and generate quality control parame-
ters for each plate. Compounds with IC50� 1 μMwere tested against mammalian cells (to
determine parasite versus host-cell selectivity) and also against a selection of drug-resistant
strains of P. falciparum.

Protein Structural Modeling and Ligand Docking
For those KDAC isotypes in parasitic species targeted by active compounds, homology models
were built by using the X-ray structure of the human ortholog as template, using the
ROSETTA3.4 macromolecular modeling package [41]. The catalytic zinc ion at the active site
was modeled explicitly following the approach of Wang et al to mimic the square-based pyra-
midal geometry as observed in crystal structures [42][43]. After the initial comparative model-
ing and loop building, each protein model was relaxed with the following constraints to
achieve the desired geometry: the zinc ion was constrained to have the axial position coordi-
nated to the conserved histidine residue (HIS, deprotonated Nε), two equatorial positions
coordinated to the conserved aspartic acid residues (ASP, deprotonated hydroxyl oxygen) and
the remaining two equatorial positions coordinated to solvent water molecules. 100 models for
each target were generated using the constrained relaxation procedure, and the one with the
lowest total energy was chosen as the final protein model for subsequent docking studies. For
each small ligand to be docked, OMEGA [44] was used to generate a conformer library; Open-
Eye's AM1-BCC implementation [45] was used to calculate partial charges. The hydroxamate
group was deprotonated in the modeling process, as suggested by previous docking and virtual
screening reports [46]. The ligands were docked to the models in ROSETTA using the ligand_-
dock application by specifying a constraint of the hydroxamate group to be coordinated to the
zinc, replacing the two water molecules used in modeling the zinc geometry. One hundred
poses were generated for each compound at each target, the 5 best-scoring poses were selected
for manual inspection, and a representative pose was finally chosen for interpretation.

Identification of Active Site Variances
For each KDAC protein isotype, a representative X-ray structure from its human ortholog was
chosen as the structural template. Any residue with an atom within a distance cutoff (10 Å) to
the catalytic zinc ion was defined as an active-site residue. Sequence alignments of other para-
site orthologs with the human protein (built by MUSCLE [47] for each KDAC family) were
used to identify residues that were different in the parasite, and these residues were identified
as variants at the active site.

Results

The KDAC Protein Families in the Parasites
Protein families were constructed from all longest isoform sequences in the proteomes of 26
eukaryotic species, which included 20 parasitic species and 6 host species (OrthoMCL clusters
with multiple sequences were defined as protein families). The dataset includes 399,592 pro-
teins in total, from which 44,531 protein families were derived. We identified all of the KDAC
protein families within the parasitic species, based on the annotations of the human orthologs
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and the annotations available for a few parasitic species. The annotations of C. elegans KDAC
proteins fromWormBase [48] were also used for inference and manual curation.

As shown in Fig 2, all 11 Zn-dependent KDAC protein isoforms were not present within the
parasites. From the human ortholog annotations, all the human KDACs were clustered into 6
separate families. KDAC1 and KDAC2 were clustered into one family (note A), and the class
IIA isotypes (4, 5, 7, and 9) and IIB isotypes (6 and 10) were each clustered into their own fami-
lies (notes B and C). Isotype KDAC3 from most species was clustered into one family (as was
KDAC11), while KDAC8s from all the hosts were clustered in one family.

In the class IIA family, almost all of the parasites had only one member in the family con-
taining human orthologs, except P. falciparum, which had no member present. Based on the C.
elegans annotation, there should be orthologs of KDAC4 for the roundworms. Some round-
worms (A. ceylanicum, A. suum, N. americanus,H. contortus, L. loa and D. immitis) also have
the KDAC5 ortholog, which clustered with the C. elegans KDAC5 into a new protein family.
Primary sequence similarity results suggested that the kinetoplastids share higher homology to
the human KDAC5 protein, so these were annotated as KDAC5. Two flatworm species (S.
mansoni and S. haematobium) also had a KDAC9 ortholog, both of which were clustered into
a separate protein family. From the current analysis, no KDAC7 ortholog was present in any
parasitic species examined.

Although there are only two isotypes in the class IIB family, two human protein members
(KDAC6/10) showed considerable expansion/deletion among the parasites. The kinetoplastids
only contained one member, while many of the roundworms and one of flatworms (S. japoni-
cum) have three or more members. Some of the roundworms had only one ortholog in this
family, with one of them (D. immitis) having no member present.

For the other isotypes, a single KDAC3 homolog was uniquely shared among Leishmania
species (and another among Trypanosoma species), with all of the hosts and flatworms and
most of the roundworms sharing orthology to the human KDAC3 protein, suggesting diver-
gence of this protein among the kinetoplastids. Orthologs to the human KDAC8 were only
found among host species, but a separate S.mansoni KDAC8 orthologous group was found to
be conserved in (and uniquely found in) flatworms. Finally, KDAC11 was conserved only
among host and roundworm species.

Based on the number of protein members within the protein families, the different species
were clustered according to their phylogenetic distances to each other (Fig 2). Kinetoplastids,
flatworms and hosts were all clustered with their own species groups, but the roundworms
clustered into two groups, largely due to the expansion in the number of KDAC6 and KDAC10
orthologs among the roundworms in the top cluster. P. falciparum clustered separately from all
of the other species, as it contained only one protein (124507060) with detected orthology to
any KDACs identified in other species. This protein was orthologous to KDAC1/2 family
members, previously characterized as a KDAC1 ortholog [49]. Two of the three other KDAC
homologs previously identified in P. falciparum [10] are orthologous to each other, but share
no orthology to any other species examined here. There are far fewer proteins in the P. falcipa-
rum proteome compared to the other species (just 5,337 proteins compared to more than 8,000
in every other species), but a smaller number of proteins did not necessarily limit the represen-
tation of KDAC orthologs, as seen in the roundworm species in Fig 2.

In Vitro Screening of Compounds against Various Parasite Species
For compound screening, we adopted cell-based approaches, since these compounds have been
previously reported to have activities in isolated enzyme assays on human KDAC proteins. A
total of 13 compounds out of the 23 screened showed efficacy in at least one parasite, with all
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of them also showing some kind of activity on the mammalian cell lines (Table 1). Most of the
active compounds showed extremely high (nM to sub-nM IC50) potency in the inhibition of P.
falciparum growth. This was consistent with reports for the hydroxamate-based KDAC inhibi-
tors acting on the malaria pathogen [12]. Approximately 10 compounds had IC50/E50 lower
(ratio< 0.5) in at least one parasite species compared to the host-cell line. One of the com-
pounds (MC2776), a pyrrole-based hydroxyamate derivative, shows considerable potency
(EC50 = 4.39 μM) on the nematode B.malayi, without detectable activity in the host-cell line
(> 10 μM), making it a candidate for further optimization and in-depth study. The activities of
MC2776 andMC2780 observed in our work were in accord with those reported recently (8b

Fig 2. KDAC proteins inferred for the parasitic species within protein families. Those with the same superscripts (A, B, C) are clustered within the same
family. Color codes provide the number of total proteins from each species within an orthologous protein family.

doi:10.1371/journal.pntd.0004026.g002

Targeting Lysine Deacetylases (KDACs) in Parasites

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004026 September 24, 2015 9 / 19



and 10c therein) [50], with higher than 10 μM IC50 on human cancer cell lines forMC2776
(8b) and more potent IC50 forMC2780 (10c). None of the benzamide analogs showed activi-
ties on these cell lines (> 20 μM), although in vitro activities of these compounds was reported
on human KDACs [51]. This suggested a possible role for the hydroxyamate/benzamide group
on cell permeability/transport.

Homology Models and Ligand Binding to the KDAC Proteins
The active compounds from in vitro screening were used to study ligand binding to the KDAC
proteins, using computational methods. Two of the representative compounds,MC2776 and
MC2780, were docked to the KDAC1 isotypes of the host (human) and each of the parasitic
species (B.malayi, L. donovani and P. falciparum). The KDAC1 isotype was chosen because it
is ubiquitously expressed in all tissues within all the organisms studied, as reported recently in
a tissue-specific expression profiling for 10 A. suum tissues (Fig 3; [52]). In addition, the
recently reported X-ray structure of the human protein (pdb code: 4BKX [53]) facilitates struc-
tural modeling of the parasitic orthologs with side-by-side comparison of ligand binding.

Homology models were built for the KDAC1 orthologs from three parasitic species (B.
malayi, L. donovani and P. falciparum) respectively using the human crystal structure as tem-
plate. The sequence identity and similarity between each target and the template are high, espe-
cially for the nematode B.malayi (S1 Table), suggesting the models should have adequate
resolution for the subsequent docking study. The RMSD (root-mean-square-deviation) values
for each model after each step in the modeling process remain stable at below 2Å, indicating
that the models show high similarities to the human structure, and that there are only subtle
differences in the loop regions and side chain conformations which may lead to differences in
binding modes.

To validate our docking procedure, a benchmark docking study was also performed for the
crystal structure, using the bound ligand (acetate ion). The experimental pose was successfully
obtained for acetate (RMSD between lowest energy ligand conformation and crystal structure:
0.74 Å). This validates the potential utility of the docking procedure. The subsequent docking
of the two ligands from the screening suggests that both ligands could bind relatively well with
the orthologs, but shows some differences at the different ortholog binding sites, especially for
the roundworm-selective ligandMC2776 (Fig 4). The models showed that when viewed from
above, the ligand the pyrrole ring was almost perfectly in the plane of the hydroxymate in
human KDAC1 with the hydroxymate group chelated with catalytic zinc. However, in the B.
malayi ortholog, the pyrrole ring rotated counter-clockwise in order to accommodate the tyro-
sine residue (Y296) at the opening at the binding channel (Fig 4a). The tyrosine residue is con-
served across all the KDAC isotypes among almost all organisms, and has been implicated to
play a critical role in the selective ligand binding to KDAC8 of S.mansoni [16]. The different
orientation of the Y296 in B.malayi could be attributed to a nearby point mutation (C254N).
The small hydrophobic residue in other species is tightly packed beneath the binding pocket;
while in B.malayi, the bulkier, more hydrophilic asparagine led to a propagation of rearrange-
ments of the two strands nearby, resulting in a misaligned tyrosine residue at the protein sur-
face. In contrast, because of the lack of the pyrrole ring,MC2780 showed very similar binding
modes in the KDAC1 proteins of human and B.malayi (Fig 5). The tert-butylcarbamate group
at position 3 of the terminal phenyl ring extended toward the outer portion of the binding
gorge, contacting one of the loops lining the rim of the catalytic tunnel (residues G677–G686),
while in the protist proteins, the same group tilted away to the other side of the channel (S1
Fig). The different binding modes ofMC2776 andMC2780 at KDAC1 may partially explain
the different affinities among different organisms. Although quantitative binding energies
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cannot be obtained from simple docking simulations, the distances of the catalytic zinc atom to
its coordinating atoms from the protein and ligand were measured in all the models for com-
parison (Table 2). In general, the ortholog protein with higher binding affinity with the ligand
shows shorter distance (both mean and standard deviation) to the zinc atom for most of the
coordinating atoms, to maintain the optimal square-based pyramidal geometry. Docking
results showed that bothMC2776 andMC2780 could bind the KDAC1 of the protists (L.
donovani and P. falciparum); However,MC2776 did not show any efficacy in any of the pro-
tists, whileMC2780 demonstrated pan-parasite potential. This may be due to its inability to
reach its target under assay conditions due to metabolism, transport, or other issues [54].

Active-Site Variance of the KDAC Proteins for Selective Ligand Design
To facilitate selective ligand design, we systematically examined all of orthologous proteins
within the parasite species and identified the variant residues near the active site for compari-
son with human protein structures. X-ray crystal structures of the catalytic domain have been
reported for 6 of the 11 zinc-containing KDAC isotypes in human, i.e. KDAC1, 2, 3, 8 (class I)
and 4, 7 (class II). Among them, KDAC7 lacks a clear ortholog in any of the parasite species, so
active-site variants were reported for KDAC1, 2, 3, and 8 together with the only class II isotype

Fig 3. Expression level of A. suumKDAC1 gene (GS_10652) in different tissues.Gene expression values are in depth of coverage per million reads
(DCPMs). The expression values are averaged across male and female samples.

doi:10.1371/journal.pntd.0004026.g003
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KDAC4 (Table 3), showing that active-site residues were well conserved in most of parasite
orthologs (especially for KDAC1). The kinetoplastid orthologs have slightly more variance,
with 8 out of the 50 residues being different from the human protein. All the other orthologs of
KDAC1 in the parasite proteins had 5 or fewer residues different from the human protein, with
the exception of B.malayi, which had 6 different residues. Interestingly, the one uniquely

Fig 4. Compound MC2776 docked to the KDAC1 protein. (A) in the B.malayi protein and (B) in theH.
sapiens protein.MC2776 is shown as yellow stick model along with important residues for ligand binding.
(C) shows a close-up view of the zinc-centered square based pyramid, Distances for these are shown in
Table 2. (D) and (E) show the rendered surface models of the cartoon representations from (A) and (B).

doi:10.1371/journal.pntd.0004026.g004

Fig 5. Compound MC2780 docked to the KDAC1 protein. A) in the B.malayi protein and B) in theH.
sapiens protein. MC2780 is shown as grey stick model along with important residues for ligand binding.

doi:10.1371/journal.pntd.0004026.g005
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different residue (C254N) is the also a contributing factor of the different binding mode of
MC2776, as suggested by docking. This demonstrates that variation at active sites could play
an important role in the pursuit of selective ligands. It is not surprising to see a higher variances
for KDAC3 in the kinetoplastids, since each of the two genera has been grouped into its own

Table 2. Distances of the catalytic zinc atom to the binding residue and ligand chelating atoms in the models of MC2776 andMC2780 docked to
KDAC1 protein of different species. The distances shown are in the unit of Angstroms. The chemical formulae for both ligands are depicted in Fig 1. O1
and O2 are from hydroxamate group of the ligands. Other atoms are from the protein, as shown in Figs 4 and 5. The coordinates of the models as pdb file are
available in S1 Supporting Materials.

Compound MC2776 MC2780

Species H. sapiens B. malayi L. donovani P. falciparum H. sapiens B. malayi L. donovani P. falciparum

ZN-ND1 (His171) (a) 3.18 ± 0.47 2.80 ± 0.04 2.51 ± 0.18 2.64 ± 0.12 2.76 ± 0.09 2.75 ± 0.09 2.30 ± 0.05 2.66 ± 0.15

ZN-O (Asp169) (b) 2.26 ± 0.13 2.22 ± 0.05 2.43 ± 0.03 2.39 ± 0.07 2.12 ± 0.04 2.17 ± 0.03 2.41 ± 0.02 2.46 ± 0.11

ZN-O (Asp257) (c) 2.68 ± 0.31 2.18 ± 0.08 2.17 ± 0.08 2.18 ± 0.06 2.44 ± 0.03 2.16 ± 0.06 2.09 ± 0.09 2.20 ± 0.04

ZN-O1 (Ligand) (d) 2.24 ± 0.29 2.08 ± 0.02 2.06 ± 0.06 2.09 ± 0.05 2.04 ± 0.01 2.11 ± 0.04 2.05 ± 0.04 2.13 ± 0.08

ZN-O2 (Ligand) (e) 2.59 ± 0.41 2.26 ± 0.05 2.83 ± 0.41 2.48 ± 0.26 2.62 ± 0.15 3.09 ± 0.08 3.10 ± 0.21 2.21 ± 0.11

EC50(IC50) (mM) >10 4.39 - - 4.81 2.53 0.47 0.06

doi:10.1371/journal.pntd.0004026.t002

Table 3. Sequence variations of KDAC proteins of parasitic species in comparison with the host (H.
sapiens) orthologs at the active sites. Active-site residues were defined as any residue with a distance
less than 10 Å to the catalytic zinc in the crystal structure. Abbreviations were used for the names of all the
species following the rule of “the first letter of genus + first three letter of species”.

Class I IIA

Target Protein KDAC1 KDAC2 KDAC3 KDAC8 KDAC4
Human gene (H. sapiens;
ENSG00000XXXXXX)

116478 196591 171720 147099 68024

PDB code 4BKX 4LXZ 4A69 1T67 4CBY
Total defined residues 50 49 50 48 49

Nematode Acey 1 - 3 - 22

Asuu 1 0 3 - 5

Bmal 6 0 2 - 13

Cele 5 3 3 - 5

Dimm 2 0 4 - 6

Hcon 1 1 3 - 5

Lloa 2 0 4 - 6

Name 1 12 3 - 5

Tmur 4 - 4 - 14

Tspi 3 - 4 - 9

Tsui 3 - 3 - 13

Kinetoplastid Tcru 8 - 21 - -

Tbru 8 - 26 - -

Lmaj 8 - 14 - -

Ldon 8 - 14 - -

Malaria Pfal 3 - - - -

Trematode Sman 4 - 3 8 14

Sjap 1 - 3 8 7

Shem 1 - 3 8 9

Csin 4 - 6 8 7

doi:10.1371/journal.pntd.0004026.t003
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orthologous protein cluster (Leishmania and Trypanosoma), suggesting their divergent dis-
tance from the human ortholog. KDAC8s of trematodes also clustered into a separate cluster
than the mammalian orthologs, but still showed quite high conservation at the active sites,
with only 8 out of the 48 residues different. In the class IIA family cluster, only one member
was found for the parasites except for P. falciparum. Annotated KDAC4 proteins (roundworms
and flatworms) were compared with the human KDAC4 structure and were well-conserved
except for A. ceylanicum, with 22 different residues out of a total of 49. A closer examination
revealed that this was due to the fragmented sequence within that region, since at positions 21,
there are gaps instead of amino acid residues. This is likely an artifact resulted from the draft
nature of the genome (proteome) data.

Discussion
We presented the first systematic examinations of all zinc-dependent KDAC proteins in repre-
sentative parasites from nematode, trematode, kinetoplastid and malaria pathogens, and showed
that some human KDAC isotypes lack clear orthologs in the parasites, with the only conserved
isotype across all the species studied being KDAC1. KDAC1 enzymes are primarily localized in
the nucleus and are expressed in all tissues almost ubiquitously. As a classical KDAC protein, it
has been studied extensively both in human and in the parasites such as P. falciparum as a novel
drug target [6, 12]. KDAC1 shares high sequence similarities among all the species studied. It
has been reported that KDAC1 of P. falciparum shares over 55% sequence identity to yeast,
human, chicken, and frog KDAC orthologs [55]. This also consistent for the nematode/trema-
tode KDAC1 in comparison with host orthologs, but the homology was lower in the kinetoplas-
tids, which had ~40% sequence identity with the remaining species (S2 Fig). It was also reflected
in active-site residues, with most of the variants coming from the kinetoplastid orthologs. As
shown in S2 Fig, out of the 12 active-site variants from all the parasite proteins, 3 are specifically
present in the kinetoplastids, indicating a higher level of divergence. It has been found that the
KDACs of kinetoplastids branched very early from the eukaryotic lineages, especially for the
class I isotopes [56]. This suggests that it would be relatively easier to design selective com-
pounds against the kinetoplastid KDAC1. Achieving species selectivity within the other parasite
species would still be difficult, due to the higher level of conservations of protein sequence espe-
cially at the active site. In this regard, the molecular ligand binding modeling of B.malayi
KDAC1 offered potential insight on improving parasitic selectivity. In fact, a BLAST search of
the protein sequence against other nematode proteomes suggests that the C254N mutation was
present within KDAC1 of other Brugia species (B. timori and B. pahangi), as well as theOncho-
cerca species (O. ochengi, O. flexuosa, andO. volvulus).

The other members in the class I isotype were tentatively labeled as KDAC3 for the kineto-
plastids, although they were each clustered into their own families (Leishmania/Trypanosoma).
They showed even greater divergence in comparison with other species, raising the possibility
that they were completely new isotypes instead of KDAC3 orthologs. Nevertheless, given their
divergence from any other KDACs, it might be worthwhile to pursue their roles as selective
drug targets. Much work has been done on the trematode KDAC8 (specifically in S.mansoni) as
a novel drug target for the control of schistosomaisis, since it is the most highly expressed class I
KDAC isotype in this organism [16]. Our results indicate that KDAC8 is in a separate family of
KDACs within the flatworms, with some divergence from host orthologs. Structural characteri-
zation of S.mansoni KDAC8 confirmed our findings and supported the observation that selec-
tive ligands can be designed to explore subtle conformational differences at the active site [16].

Interestingly, among the class II families, IIA and IIB proteins showed different gene expan-
sion/deletion patterns within the parasite species compared to hosts. Four members have been
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identified for the class IIA proteins in the hosts (4, 5, 7, and 9), while only 1 or 2 members were
present in the parasites. In contrast, in the class IIB families, some parasites (especially the
roundworm species) showed considerable expansions. This has been observed before in the
non-parasitic nematode C. elegans [57] and was confirmed in many of the parasitic round-
worms analyzed in this study. However, some of roundworms (like all the protists) also showed
a loss of genes, none or just one protein among the two class IIB protein families (6, 10). The
highly variable gene expansion/loss pattern implied different functional roles for the class IIB
isotypes in nematodes, which is a topic worth further exploration.

The much less-studied KDAC11, as the sole member of the class IV isotype, was only pres-
ent in hosts and nematodes. KDAC11 has been found to be differentially expressed among dif-
ferent tissues and was suggested to be a novel drug target in human carcinomas [58]. Further
characterization of its roles in nematodes could decipher its specificities and reveal any poten-
tial for targeted therapeutics. It was surprising that two of the class II KDACs in P. falciparum
were clustered into a completely new protein family, with none of the known KDAC proteins
from other species present. This protein family contained the most members (1271 proteins)
among all the families generated, including 1244 P. falciparum proteins and 27 proteins from
the other 12 species. Besides the two KDACs, the 1244 P. falciparum proteins within this pro-
tein family were assigned annotations ranging from protein enzymes (kinase, polymerase, pro-
tease, transferase, and etc.) to transporters, ion channels and many others, with over half of
them annotated as unknown functions. This indicates that the protein family was a promiscu-
ous assembly with no consensus functions identified, and also showed that the two P. falcipa-
rum KDAC proteins have the largest evolutionary distances from other species (consistent
with previous observations [10, 12]).

In this work, we report some preliminary results of compound screening against a panel of
parasitic species, and explored the mechanisms of their activities at the molecular level for certain
KDAC isotypes. Docking calculations were performed on the homology models for all the para-
sitic protein orthologs. Caution should be exercised when interpreting the observations made for
protein-ligand interactions, since homology models have limited representation of different loop
conformations between the target structure and the template. In our case, the sequence identity
between template and target was relatively high (ranging from 45% for L. donovani and 62% for
P. falciparum, to 72% for B.malayi for the full length, and over 80% for all the species at the
active site as shown in Table 3 and S1 Table and S2 Fig), so the docking result in homology mod-
els should be reliable at this level [59]. However, it is still premature to draw conclusions based
on the docking results on a single isotype, since the "inactivity" of compounds in a full-organism
assay may be attributed to a number of possible explanations including: (i) the compound not
penetrating the cell (inability to reach the target), (ii) the compound being metabolized in the
organism, active excretion from the cell, or (iii) the target of the compound not being essential.
In addition, although KDAC1 is the most important target across all the organisms (since it is
ubiquitous), the compounds’molecular interactions on other KDAC isotypes or even other pro-
teins were not examined in detail. The work reported is "preliminary" evidence of KDACs as
drug targets, nevertheless it should inspire both biochemical experimental and computational
studies, for more detailed characterization of KDAC targets within the parasite species and help
generate new and improved selective compounds to target parasitic disease.

Conclusions
A systematic study of all KDAC proteins within parasitic species from protists to nematodes as
novel drug targets is reported. Although much work is still required to elucidate their functions
and essential nature of these KDACs in parasites, preliminary compound screening suggests
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that they are inhibited by known host KDAC ligands; such compounds also showed different
degrees of selectivity within the parasitic panel. Molecular modeling in combination with geno-
mic profiling offered insight in the mechanism of selectivity and suggested future directions for
selectively targeting parasitic lysine deactylases.

Supporting Information
S1 Fig. Compound MC2780 docked to the KDAC1 protein of P. falciparum.MC2780 is
shown as grey stick model along with important residues for ligand binding as Fig 5.
(TIFF)

S2 Fig. Sequence alignments of all the KDAC1 proteins of parasitic species within the fam-
ily, along with the sequence ofH. sapiens. Active-site residues (within 10 Å distance to cata-
lytic zinc atom) in the crystal structure (4BKX, chain B) are marked as “+” underneath. Any
variant residues within the parasitic species are marked as “�” at the bottom.
(TIF)

S1 Table. Sequence identity and similarity between each parasite species target and the tem-
plate (human) structure, as well as the RMSD values in each step of the modeling process.
(XLSX)

S1 Supporting Materials. A compressed file containing protein data bank-format file for
the top 5 scoring poses of docked ligands to the KDAC1 structures for the 4 species (H.
sapiens, B.malayi, L. donovani and P. falciparum) in pdb format.
(ZIP)

Acknowledgments
We acknowledge members of the Mitreva and Marshall groups for helpful discussions. We also
thank the anonymous reviewers and editor for excellent inputs and constructive suggestions
for the improvement of the manuscript.

Author Contributions
Conceived and designed the experiments: GRMMM. Performed the experiments: KP BN.
Analyzed the data: QW BAR. Contributed reagents/materials/analysis tools: AM SV DR.
Wrote the paper: QW GRMMM.

References
1. Hotez PJ, Pecoul B. "Manifesto" for advancing the control and elimination of neglected tropical dis-

eases. PLoS neglected tropical diseases. 2010; 4(5):e718. doi: 10.1371/journal.pntd.0000718 PMID:
20520793

2. Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases.
Nature. 2004; 430(6996):242–9. PMID: 15241422

3. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M,Walther TC, et al. Lysine acetylation targets
protein complexes and co-regulates major cellular functions. Science. 2009; 325(5942):834–40. Epub
2009/07/18. doi: 10.1126/science.1175371 PMID: 19608861

4. Nebbioso A, Carafa V, Benedetti R, Altucci L. Trials with 'epigenetic' drugs: an update. Molecular oncol-
ogy. 2012; 6(6):657–82. doi: 10.1016/j.molonc.2012.09.004 PMID: 23103179

5. Gregory PD, Wagner K, Horz W. Histone acetylation and chromatin remodeling. Experimental cell
research. 2001; 265(2):195–202. PMID: 11302684

6. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives.
Molecular cancer research : MCR. 2007; 5(10):981–9. PMID: 17951399

Targeting Lysine Deacetylases (KDACs) in Parasites

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004026 September 24, 2015 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004026.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004026.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004026.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pntd.0004026.s004
http://dx.doi.org/10.1371/journal.pntd.0000718
http://www.ncbi.nlm.nih.gov/pubmed/20520793
http://www.ncbi.nlm.nih.gov/pubmed/15241422
http://dx.doi.org/10.1126/science.1175371
http://www.ncbi.nlm.nih.gov/pubmed/19608861
http://dx.doi.org/10.1016/j.molonc.2012.09.004
http://www.ncbi.nlm.nih.gov/pubmed/23103179
http://www.ncbi.nlm.nih.gov/pubmed/11302684
http://www.ncbi.nlm.nih.gov/pubmed/17951399


7. Ficner R. Novel structural insights into class I and II histone deacetylases. Current topics in medicinal
chemistry. 2009; 9(3):235–40. PMID: 19355988

8. Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases.
International journal for parasitology Drugs and drug resistance. 2014; 4(2):95–111. doi: 10.1016/j.
ijpddr.2014.02.002 PMID: 25057459

9. Panic G, Duthaler U, Speich B, Keiser J. Repurposing drugs for the treatment and control of helminth
infections. International journal for parasitology Drugs and drug resistance. 2014; 4(3):185–200. doi:
10.1016/j.ijpddr.2014.07.002 PMID: 25516827

10. Andrews KT, Haque A, Jones MK. HDAC inhibitors in parasitic diseases. Immunology and cell biology.
2012; 90(1):66–77. doi: 10.1038/icb.2011.97 PMID: 22124373

11. Deshmukh AS, Srivastava S, Dhar SK. Plasmodium falciparum: epigenetic control of var gene regula-
tion and disease. Sub-cellular biochemistry. 2013; 61:659–82. doi: 10.1007/978-94-007-4525-4_28
PMID: 23150271

12. Andrews KT, Tran TN, Fairlie DP. Towards histone deacetylase inhibitors as new antimalarial drugs.
Current pharmaceutical design. 2012; 18(24):3467–79. PMID: 22607140

13. Giannini G, Battistuzzi G, Vignola D. Hydroxamic acid based histone deacetylase inhibitors with con-
firmed activity against the malaria parasite. Bioorganic & medicinal chemistry letters. 2015; 25(3):459–
61.

14. Hansen FK, Skinner-Adams TS, Duffy S, Marek L, Sumanadasa SD, Kuna K, et al. Synthesis, antima-
larial properties, and SAR studies of alkoxyurea-based HDAC inhibitors. ChemMedChem. 2014; 9
(3):665–70. doi: 10.1002/cmdc.201300469 PMID: 24497437

15. Miao J, Lawrence M, Jeffers V, Zhao F, Parker D, Ge Y, et al. Extensive lysine acetylation occurs in
evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falcip-
arum intraerythrocytic development. Molecular microbiology. 2013; 89(4):660–75. doi: 10.1111/mmi.
12303 PMID: 23796209

16. Marek M, Kannan S, Hauser AT, Moraes Mourao M, Caby S, Cura V, et al. Structural basis for the inhi-
bition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosomaman-
soni. PLoS pathogens. 2013; 9(9):e1003645. doi: 10.1371/journal.ppat.1003645 PMID: 24086136

17. Stolfa DA, Marek M, Lancelot J, Hauser AT, Walter A, Leproult E, et al. Molecular basis for the antipara-
sitic activity of a mercaptoacetamide derivative that inhibits histone deacetylase 8 (HDAC8) from the
human pathogen schistosoma mansoni. Journal of molecular biology. 2014; 426(20):3442–53. doi: 10.
1016/j.jmb.2014.03.007 PMID: 24657767

18. Trenholme K, Marek L, Duffy S, Pradel G, Fisher G, Hansen FK, et al. Lysine acetylation in sexual
stage malaria parasites is a target for antimalarial small molecules. Antimicrobial agents and chemo-
therapy. 2014; 58(7):3666–78. doi: 10.1128/AAC.02721-13 PMID: 24733477

19. Hansen FK, Sumanadasa SD, Stenzel K, Duffy S, Meister S, Marek L, et al. Discovery of HDAC inhibi-
tors with potent activity against multiple malaria parasite life cycle stages. European journal of medicinal
chemistry. 2014; 82:204–13. doi: 10.1016/j.ejmech.2014.05.050 PMID: 24904967

20. Andrews KT, Gupta AP, Tran TN, Fairlie DP, Gobert GN, Bozdech Z. Comparative gene expression
profiling of P. falciparummalaria parasites exposed to three different histone deacetylase inhibitors.
PloS one. 2012; 7(2):e31847. doi: 10.1371/journal.pone.0031847 PMID: 22384084

21. Carrillo AK, GuiguemdeWA, Guy RK. Evaluation of histone deacetylase inhibitors (HDACi) as thera-
peutic leads for human African trypanosomiasis (HAT). Bioorganic & medicinal chemistry. 2015.

22. Kelly JM, Taylor MC, Horn D, Loza E, Kalvinsh I, Bjorkling F. Inhibitors of human histone deacetylase
with potent activity against the African trypanosome Trypanosoma brucei. Bioorganic & medicinal
chemistry letters. 2012; 22(5):1886–90.

23. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the
regulation of RNA synthesis. Proc Natl Acad Sci USA. 1964; 51:786–94. PMID: 14172992

24. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for
data retrieval across taxonomic space. Database: the journal of biological databases and curation.
2011; 2011:bar030. doi: 10.1093/database/bar030 PMID: 21785142

25. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids
Research. 2012; 40(Database issue):D48–D53. doi: 10.1093/nar/gkr1202 PMID: 22144687

26. Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, ChenWJ, et al. WormBase 2014: new views of
curated biology. Nucleic acids research. 2013.

27. Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, Weil GJ. Gender-associated genes in filarial nem-
atodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis. 2011; 5
(1):e947. Epub 2011/02/02. doi: 10.1371/journal.pntd.0000947 PMID: 21283610

Targeting Lysine Deacetylases (KDACs) in Parasites

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004026 September 24, 2015 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/19355988
http://dx.doi.org/10.1016/j.ijpddr.2014.02.002
http://dx.doi.org/10.1016/j.ijpddr.2014.02.002
http://www.ncbi.nlm.nih.gov/pubmed/25057459
http://dx.doi.org/10.1016/j.ijpddr.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25516827
http://dx.doi.org/10.1038/icb.2011.97
http://www.ncbi.nlm.nih.gov/pubmed/22124373
http://dx.doi.org/10.1007/978-94-007-4525-4_28
http://www.ncbi.nlm.nih.gov/pubmed/23150271
http://www.ncbi.nlm.nih.gov/pubmed/22607140
http://dx.doi.org/10.1002/cmdc.201300469
http://www.ncbi.nlm.nih.gov/pubmed/24497437
http://dx.doi.org/10.1111/mmi.12303
http://dx.doi.org/10.1111/mmi.12303
http://www.ncbi.nlm.nih.gov/pubmed/23796209
http://dx.doi.org/10.1371/journal.ppat.1003645
http://www.ncbi.nlm.nih.gov/pubmed/24086136
http://dx.doi.org/10.1016/j.jmb.2014.03.007
http://dx.doi.org/10.1016/j.jmb.2014.03.007
http://www.ncbi.nlm.nih.gov/pubmed/24657767
http://dx.doi.org/10.1128/AAC.02721-13
http://www.ncbi.nlm.nih.gov/pubmed/24733477
http://dx.doi.org/10.1016/j.ejmech.2014.05.050
http://www.ncbi.nlm.nih.gov/pubmed/24904967
http://dx.doi.org/10.1371/journal.pone.0031847
http://www.ncbi.nlm.nih.gov/pubmed/22384084
http://www.ncbi.nlm.nih.gov/pubmed/14172992
http://dx.doi.org/10.1093/database/bar030
http://www.ncbi.nlm.nih.gov/pubmed/21785142
http://dx.doi.org/10.1093/nar/gkr1202
http://www.ncbi.nlm.nih.gov/pubmed/22144687
http://dx.doi.org/10.1371/journal.pntd.0000947
http://www.ncbi.nlm.nih.gov/pubmed/21283610


28. Tang YT, Gao X, Rosa BA, Abubucker S, Hallsworth-Pepin K, Martin J, et al. Genome of the human
hookworm Necator americanus. Nature genetics. 2014; 46(3):261–9. doi: 10.1038/ng.2875 PMID:
24441737

29. Cantacessi C, Gasser RB, Strube C, Schnieder T, Jex AR, Hall RS, et al. Deep insights into Dictyocau-
lus viviparus transcriptomes provides unique prospects for new drug targets and disease intervention.
Biotechnol Adv. 2011; 29(3):261–71. Epub 2010/12/25. doi: 10.1016/j.biotechadv.2010.11.005 PMID:
21182926

30. Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, et al. The genome and transcriptome of
Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013; 14
(8):R88. Epub 2013/08/30. doi: 10.1186/gb-2013-14-8-r88 PMID: 23985316

31. Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, et al. The genome of the
heartworm, Dirofilaria immitis, reveals drug and vaccine targets. FASEB J. 2012; 26(11):4650–61. doi:
10.1096/fj.12-205096 PMID: 22889830

32. Zerlotini A, Heiges M, Wang H, Moraes RL, Dominitini AJ, Ruiz JC, et al. SchistoDB: a Schistosoma
mansoni genome resource. Nucleic Acids Res. 2009; 37(Database issue):D579–82. Epub 2008/10/10.
doi: 10.1093/nar/gkn681 PMID: 18842636

33. Wang X, ChenW, Huang Y, Sun J, Men J, Liu H, et al. The draft genome of the carcinogenic human
liver fluke Clonorchis sinensis. Genome biology. 2011; 12(10):R107. doi: 10.1186/gb-2011-12-10-r107
PMID: 22023798

34. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a func-
tional genomic resource for the Trypanosomatidae. Nucleic acids research. 2010; 38(Database issue):
D457–62. doi: 10.1093/nar/gkp851 PMID: 19843604

35. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein fam-
ilies. Nucleic Acids Res. 2002; 30(7):1575–84. Epub 2002/03/28. PMID: 11917018

36. Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, et al. Using OrthoMCL to assign proteins to
OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Current protocols in bioinfor-
matics / editoral board, Andreas D Baxevanis [et al]. 2011;Chapter 6:Unit 6 12 1–9.

37. Li L, Stoeckert CJ Jr., Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes.
Genome research. 2003; 13(9):2178–89. PMID: 12952885

38. Taylor CM, Wang Q, Rosa BA, Huang SC, Powell K, Schedl T, et al. Discovery of anthelmintic drug tar-
gets and drugs using chokepoints in nematode metabolic pathways. PLoS Pathog. 2013; 9(8):
e1003505. Epub 2013/08/13. doi: 10.1371/journal.ppat.1003505 PMID: 23935495

39. Taylor CM, Martin J, Rao RU, Powell K, Abubucker S, Mitreva M. Using existing drugs as leads for
broad spectrum anthelmintics targeting protein kinases. PLoS pathogens. 2013; 9(2):e1003149. doi:
10.1371/journal.ppat.1003149 PMID: 23459584

40. Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC. Assessment and con-
tinued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screen-
ing. Antimicrobial agents and chemotherapy. 2007; 51(6):1926–33. PMID: 17371812

41. Das R, Baker D. Macromolecular modeling with rosetta. Annual review of biochemistry. 2008; 77:363–
82.

42. Wang C, Vernon R, Lange O, Tyka M, Baker D. Prediction of structures of zinc-binding proteins through
explicit modeling of metal coordination geometry. Protein science: a publication of the Protein Society.
2010; 19(3):494–506. Epub 2010/01/08.

43. Bottomley MJ, Lo Surdo P, Di Giovine P, Cirillo A, Scarpelli R, Ferrigno F, et al. Structural and functional
analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J
Biol Chem. 2008; 283(39):26694–704. Epub 2008/07/11. doi: 10.1074/jbc.M803514200 PMID:
18614528

44. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT. Conformer generation with OMEGA:
algorithm and validation using high quality structures from the Protein Databank and Cambridge Struc-
tural Database. Journal of chemical information and modeling. 2010; 50(4):572–84. doi: 10.1021/
ci100031x PMID: 20235588

45. Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC
model: II. Parameterization and validation. Journal of computational chemistry. 2002; 23(16):1623–41.
Epub 2002/10/24. PMID: 12395429

46. Irwin JJ, Raushel FM, Shoichet BK. Virtual screening against metalloenzymes for inhibitors and sub-
strates. Biochemistry. 2005; 44(37):12316–28. PMID: 16156645

47. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity.
BMC bioinformatics. 2004; 5:113. PMID: 15318951

Targeting Lysine Deacetylases (KDACs) in Parasites

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004026 September 24, 2015 18 / 19

http://dx.doi.org/10.1038/ng.2875
http://www.ncbi.nlm.nih.gov/pubmed/24441737
http://dx.doi.org/10.1016/j.biotechadv.2010.11.005
http://www.ncbi.nlm.nih.gov/pubmed/21182926
http://dx.doi.org/10.1186/gb-2013-14-8-r88
http://www.ncbi.nlm.nih.gov/pubmed/23985316
http://dx.doi.org/10.1096/fj.12-205096
http://www.ncbi.nlm.nih.gov/pubmed/22889830
http://dx.doi.org/10.1093/nar/gkn681
http://www.ncbi.nlm.nih.gov/pubmed/18842636
http://dx.doi.org/10.1186/gb-2011-12-10-r107
http://www.ncbi.nlm.nih.gov/pubmed/22023798
http://dx.doi.org/10.1093/nar/gkp851
http://www.ncbi.nlm.nih.gov/pubmed/19843604
http://www.ncbi.nlm.nih.gov/pubmed/11917018
http://www.ncbi.nlm.nih.gov/pubmed/12952885
http://dx.doi.org/10.1371/journal.ppat.1003505
http://www.ncbi.nlm.nih.gov/pubmed/23935495
http://dx.doi.org/10.1371/journal.ppat.1003149
http://www.ncbi.nlm.nih.gov/pubmed/23459584
http://www.ncbi.nlm.nih.gov/pubmed/17371812
http://dx.doi.org/10.1074/jbc.M803514200
http://www.ncbi.nlm.nih.gov/pubmed/18614528
http://dx.doi.org/10.1021/ci100031x
http://dx.doi.org/10.1021/ci100031x
http://www.ncbi.nlm.nih.gov/pubmed/20235588
http://www.ncbi.nlm.nih.gov/pubmed/12395429
http://www.ncbi.nlm.nih.gov/pubmed/16156645
http://www.ncbi.nlm.nih.gov/pubmed/15318951


48. Harris TW, Baran J, Bieri T, Cabunoc A, Chan J, ChenWJ, et al. WormBase 2014: new views of
curated biology. Nucleic acids research. 2014; 42(Database issue):D789–93. doi: 10.1093/nar/gkt1063
PMID: 24194605

49. Joshi MB, Lin DT, Chiang PH, Goldman ND, Fujioka H, AikawaM, et al. Molecular cloning and nuclear
localization of a histone deacetylase homologue in Plasmodium falciparum. Molecular and biochemical
parasitology. 1999; 99(1):11–9. PMID: 10215020

50. Valente S, Trisciuoglio D, Tardugno M, Benedetti R, Labella D, Secci D, et al. tert-Butylcarbamate-con-
taining histone deacetylase inhibitors: apoptosis induction, cytodifferentiation, and antiproliferative
activities in cancer cells. ChemMedChem. 2013; 8(5):800–11. doi: 10.1002/cmdc.201300005 PMID:
23526814

51. Patel V, Mazitschek R, Coleman B, Nguyen C, Urgaonkar S, Cortese J, et al. Identification and charac-
terization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum.
Journal of medicinal chemistry. 2009; 52(8):2185–7. doi: 10.1021/jm801654y PMID: 19317450

52. Rosa BA, Jasmer DP, Mitreva M. Genome-wide tissue-specific gene expression, co-expression and
regulation of co-expressed genes in adult nematode Ascaris suum. PLoS neglected tropical diseases.
2014; 8(2):e2678. doi: 10.1371/journal.pntd.0002678 PMID: 24516681

53. Millard CJ, Watson PJ, Celardo I, Gordiyenko Y, Cowley SM, Robinson CV, et al. Class I HDACs share
a commonmechanism of regulation by inositol phosphates. Molecular cell. 2013; 51(1):57–67. doi: 10.
1016/j.molcel.2013.05.020 PMID: 23791785

54. AnWF, Tolliday N. Cell-based assays for high-throughput screening. Molecular biotechnology. 2010;
45(2):180–6. doi: 10.1007/s12033-010-9251-z PMID: 20151227

55. Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, et al. Apicidin: a novel
antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA. 1996; 93
(23):13143–7. Epub 1996/11/12. PMID: 8917558

56. Horn D. Histone deacetylases. Advances in experimental medicine and biology. 2008; 625:81–6. doi:
10.1007/978-0-387-77570-8_7 PMID: 18365660

57. Yang XJ, Gregoire S. Class II histone deacetylases: from sequence to function, regulation, and clinical
implication. Molecular and cellular biology. 2005; 25(8):2873–84. PMID: 15798178

58. Deubzer HE, Schier MC, Oehme I, Lodrini M, Haendler B, Sommer A, et al. HDAC11 is a novel drug tar-
get in carcinomas. International journal of cancer Journal international du cancer. 2013; 132(9):2200–
8. doi: 10.1002/ijc.27876 PMID: 23024001

59. Rodrigues JP, Melquiond AS, Karaca E, Trellet M, van Dijk M, van Zundert GC, et al. Defining the limits
of homology modeling in information-driven protein docking. Proteins. 2013; 81(12):2119–28. doi: 10.
1002/prot.24382 PMID: 23913867

Targeting Lysine Deacetylases (KDACs) in Parasites

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004026 September 24, 2015 19 / 19

http://dx.doi.org/10.1093/nar/gkt1063
http://www.ncbi.nlm.nih.gov/pubmed/24194605
http://www.ncbi.nlm.nih.gov/pubmed/10215020
http://dx.doi.org/10.1002/cmdc.201300005
http://www.ncbi.nlm.nih.gov/pubmed/23526814
http://dx.doi.org/10.1021/jm801654y
http://www.ncbi.nlm.nih.gov/pubmed/19317450
http://dx.doi.org/10.1371/journal.pntd.0002678
http://www.ncbi.nlm.nih.gov/pubmed/24516681
http://dx.doi.org/10.1016/j.molcel.2013.05.020
http://dx.doi.org/10.1016/j.molcel.2013.05.020
http://www.ncbi.nlm.nih.gov/pubmed/23791785
http://dx.doi.org/10.1007/s12033-010-9251-z
http://www.ncbi.nlm.nih.gov/pubmed/20151227
http://www.ncbi.nlm.nih.gov/pubmed/8917558
http://dx.doi.org/10.1007/978-0-387-77570-8_7
http://www.ncbi.nlm.nih.gov/pubmed/18365660
http://www.ncbi.nlm.nih.gov/pubmed/15798178
http://dx.doi.org/10.1002/ijc.27876
http://www.ncbi.nlm.nih.gov/pubmed/23024001
http://dx.doi.org/10.1002/prot.24382
http://dx.doi.org/10.1002/prot.24382
http://www.ncbi.nlm.nih.gov/pubmed/23913867

	Washington University School of Medicine
	Digital Commons@Becker
	2015

	Targeting lysine deacetylases (KDACs) in parasites
	Qi Wang
	Bruce A. Rosa
	Bakela Nare
	Kerrie Powell
	Sergio Valente
	See next page for additional authors
	Recommended Citation
	Authors


	Targeting Lysine Deacetylases (KDACs) in Parasites

