8 research outputs found

    Effect of retinoic acid on human adrenal corticosteroid synthesis.

    Get PDF
    AbstractAimsRetinoic acid has recently yielded promising results in the treatment of Cushing's disease, i.e., excess cortisol secretion due to a pituitary corticotropin (ACTH)-secreting adenoma. In addition to its effect on the tumoral corticotrope cell, clinical results suggest an additional adrenal site of action. Aim of this study was to evaluate whether retinoic acid modulates cortisol synthesis and secretion by human adrenals in vitro.Main methodsPrimary cultures from 10 human adrenals specimens were incubated with 10nM, 100nM and 1μM retinoic acid with and without 10nM ACTH for 24h. Cortisol levels were measured by radioimmunoassay and CYP11A1, STAR and MC2R gene expression analyzed by real-time PCR.Key findingsRetinoic acid increased cortisol secretion (149.5±33.01%, 151.3±49.45% and 129.3±8.32% control secretion for 10nM, 100nM and 1μM respectively, p<0.05) and potentiated STAR expression (1.51±0.22, 1.56±0.15 and 1.59±0.14 fold change over baseline, for 10nM, 100nM and 1μM respectively, p<0.05). Concurrently, retinoic acid markedly blunted constitutional and ACTH-induced MC2R expression (0.66±0.11, 0.62±0.08 and 0.53±0.07 fold change over baseline, for 10nM, 100nM and 1μM respectively, p<0.05; 0.71±0.10, 0.51±0.07 and 0.51±0.08 fold change over ACTH alone, for 10nM, 100nM and 1μM respectively, p<0.05). No effect on CYP11A1 was observed.SignificanceRetinoic acid stimulates cortisol synthesis and secretion in human adrenals and at the same time markedly blunts ACTH receptor transcription. These results reveal a novel, adrenal effect of retinoic acid which may contribute to its efficacy in patients with Cushing's disease

    The Expression of VGF is Reduced in Leukocytes of Depressed Patients and it is Restored by Effective Antidepressant Treatment

    No full text
    Major depression is a disease characterized by an inability of neuronal systems to show appropriate adaptive plasticity especially under challenging conditions, such as stress. Conversely, pharmacological intervention may normalize such defects through the modulation of factors that might act in concert for the functional recovery of depressed patients, like the neuropeptide VGF, which has previously shown to possess antidepressant like activity. We analyzed VGF mRNA levels in the brain of rodents exposed to stress or treated with antidepressant drugs. In addition, we assessed VGF expression in leukocytes obtained from 25 drug-free depressed patients before and during antidepressant treatment. We found a persistent reduction of VGF expression after exposure to prenatal stress and an upregulation of its levels following chronic treatment with different antidepressant drugs. Moreover, VGF mRNA levels were significantly reduced in drug-free depressed patients, as compared with controls, and were modulated in response to effective antidepressant treatment. Our data provide further support to the role of VGF in mood disorders and suggest that VGF could be a more specific biomarker for treatment responsiveness

    10-year time course of Hg and organic compounds in Augusta Bay: Bioavailability and biological effects in marine organisms

    No full text
    In the last century, many Mediterranean coastal areas have been subjected to anthropogenic disturbances from industrial activities, uncontrolled landfills, shipyards, and high maritime traffic. The Augusta Bay (eastern Sicily, Italy) represents an example of a strongly impacted coastal environment with an elevated level of sediments contamination due to the presence of one of the largest European petrochemical plants, combined with an extensive commercial and military harbor. The most significant contaminants were represented by mercury (Hg) and hexachlorobenzene (HCB), derived from a former chlor-alkali plant, and other organic compounds like polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Since the 1970s, Augusta Bay has become internationally recognized as a contaminated marine environment, although very little information is available regarding the temporal trend of contaminants bioavailability and biological impacts on aquatic organisms. In this study, the Hg and HCB concentrations were investigated over 10 years (from 2003 to 2013) in sediments and invertebrate and vertebrate organisms; these two contaminants' ecotoxicity was further evaluated at a biochemical and cellular level by analyzing the induction of organic biotransformation processes and DNA damages. The results showed high concentrations of Hg and HCB in sediments and their strong bioaccumulation in different species with significantly higher values than those measured in reference sites. This trend was paralleled by increased micronuclei frequency (DNA damage biomarker) and activity of the biotransformation system. While levels of chemicals in sediments remained elevated during the time course, their bioavailability and biological effects showed a gradual decrease after 2003, when the chlor-alkali plant was closed. Environmental persistence of Hg and HCB availability facilitates their bioaccumulation and affects the health status of marine organisms, with possible implications for environmental risk, pollutants transfer, and human health

    Establishment of a protocol to extend the lifespan of human hormone-secreting pituitary adenoma cells

    No full text
    Purpose The aim of this study was to generate immortalized human anterior pituitary adenoma cells. Reliable cell models for the study of human pituitary adenomas are as yet lacking and studies performed so far used repeated passaging of freshly excised adenomas, with the attendant limitations due to limited survival in culture, early senescence, and poor reproducibility. Methods &amp; Results We devised a technique based upon repeated co-transfections of two retroviral vectors, one carrying the catalytic subunit of human telomerase, hTERT, the other SV40 large T antigen. This approach extended the lifespan of cells derived from a human growth hormone-secreting adenoma up to 18 months while retaining morphology of primary cells, growth hormone synthesis and growth hormone secretion. Conclusions Our attempt represents the first demonstration of successful lifespan extension of human growth hormone-secreting pituitary adenoma cells via co-transfection of hTERT and SV40T and paves the way to future attempts to obtain stable cell lines

    Table_1_10-year time course of Hg and organic compounds in Augusta Bay: Bioavailability and biological effects in marine organisms.DOCX

    No full text
    In the last century, many Mediterranean coastal areas have been subjected to anthropogenic disturbances from industrial activities, uncontrolled landfills, shipyards, and high maritime traffic. The Augusta Bay (eastern Sicily, Italy) represents an example of a strongly impacted coastal environment with an elevated level of sediments contamination due to the presence of one of the largest European petrochemical plants, combined with an extensive commercial and military harbor. The most significant contaminants were represented by mercury (Hg) and hexachlorobenzene (HCB), derived from a former chlor-alkali plant, and other organic compounds like polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Since the 1970s, Augusta Bay has become internationally recognized as a contaminated marine environment, although very little information is available regarding the temporal trend of contaminants bioavailability and biological impacts on aquatic organisms. In this study, the Hg and HCB concentrations were investigated over 10 years (from 2003 to 2013) in sediments and invertebrate and vertebrate organisms; these two contaminants' ecotoxicity was further evaluated at a biochemical and cellular level by analyzing the induction of organic biotransformation processes and DNA damages. The results showed high concentrations of Hg and HCB in sediments and their strong bioaccumulation in different species with significantly higher values than those measured in reference sites. This trend was paralleled by increased micronuclei frequency (DNA damage biomarker) and activity of the biotransformation system. While levels of chemicals in sediments remained elevated during the time course, their bioavailability and biological effects showed a gradual decrease after 2003, when the chlor-alkali plant was closed. Environmental persistence of Hg and HCB availability facilitates their bioaccumulation and affects the health status of marine organisms, with possible implications for environmental risk, pollutants transfer, and human health.</p

    Table_2_10-year time course of Hg and organic compounds in Augusta Bay: Bioavailability and biological effects in marine organisms.DOCX

    No full text
    In the last century, many Mediterranean coastal areas have been subjected to anthropogenic disturbances from industrial activities, uncontrolled landfills, shipyards, and high maritime traffic. The Augusta Bay (eastern Sicily, Italy) represents an example of a strongly impacted coastal environment with an elevated level of sediments contamination due to the presence of one of the largest European petrochemical plants, combined with an extensive commercial and military harbor. The most significant contaminants were represented by mercury (Hg) and hexachlorobenzene (HCB), derived from a former chlor-alkali plant, and other organic compounds like polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Since the 1970s, Augusta Bay has become internationally recognized as a contaminated marine environment, although very little information is available regarding the temporal trend of contaminants bioavailability and biological impacts on aquatic organisms. In this study, the Hg and HCB concentrations were investigated over 10 years (from 2003 to 2013) in sediments and invertebrate and vertebrate organisms; these two contaminants' ecotoxicity was further evaluated at a biochemical and cellular level by analyzing the induction of organic biotransformation processes and DNA damages. The results showed high concentrations of Hg and HCB in sediments and their strong bioaccumulation in different species with significantly higher values than those measured in reference sites. This trend was paralleled by increased micronuclei frequency (DNA damage biomarker) and activity of the biotransformation system. While levels of chemicals in sediments remained elevated during the time course, their bioavailability and biological effects showed a gradual decrease after 2003, when the chlor-alkali plant was closed. Environmental persistence of Hg and HCB availability facilitates their bioaccumulation and affects the health status of marine organisms, with possible implications for environmental risk, pollutants transfer, and human health.</p
    corecore