130 research outputs found

    Sensor Placement Strategies for the Seismic Monitoring of Complex Vaulted Structures of the Modern Architectural Heritage

    Get PDF
    Effective diagnostic and monitoring systems are highly needed in the building and infrastructure sector, to provide a comprehensive assessment of the structural health state and improve the maintenance and restoration planning. Vibration-based techniques, and especially ambient vibration testing, have proved to be particularly suitable for both periodic and continuous monitoring of existing structures. As a general requirement, permanent systems must include a sensing network able to run a continuous surveillance and provide reliable analyses based on different information sources. The variability in the environmental and operating conditions needs to be accounted for in designing such a sensor network, but it is mainly the structural typology that governs the optimal sensor placement strategy. Architectural heritage consists of a great variety of buildings and monuments that significantly differ from each other in terms of typology, historic period, construction techniques, and materials. In this paper, the main issues regarding seismic protection and analysis of the modern architectural heritage are introduced and applied to one of the vaulted structures built by Pier Luigi Nervi in the Turin Exhibition Centre. The importance of attaining an adequate level of knowledge in historic structures is also highlighted. After an overview of the Turin Exhibition Centre and its construction innovations, this paper focuses on Hall B, describing the structural design conceived by Pier Luigi Nervi. A seismic assessment of the structures of Hall B is then presented, considering the potential seismic damage to nonstructural elements. Subsequently, the application of an optimal sensor placement strategy is described with reference to two different scenarios: the first one corresponding to the undamaged structure and the second one that considers a possible damage to the infill walls. Finally, a novel damage-scenario-driven sensor placement strategy based on a combination of the two above mentioned is proposed and discussed. One of the major conclusions drawn from the analyses performed is that nonstructural elements undergoing seismic damage or degradation may significantly affect the global dynamic response and consequently the optimal sensing configurations

    Experimental investigation on the ability of macro-encapsulated polyurethane to resist cyclic damaging actions in self-repaired cement-based elements

    Get PDF
    The use of polymer precursors as repairing agents in capsule-based self-healing systems has been extensively studied in recent years. In particular, the effectiveness of macro-encapsulated polyurethane in restoring both watertightness and mechanical properties has been demonstrated at the laboratory level, and the experimental methods to test the effectiveness have been validated following pre-standard procedures. However, the use of macro-capsules containing polyurethane precursors for field applications has not been sufficiently implemented yet. For these systems to become appealing to the construction industry, it is essential to further characterize the self-healing effect in terms of stability in time, namely, to investigate the behavior of the self-healing system when subjected to recurring actions that can affect structures in time, after cracking and subsequent self-repairing. The goal of this study was to characterize the ability of commercial polyurethane foams to withstand cyclic flexural actions and repeated temperature variations after release from cementitious macro-capsules embedded in mortar specimens. The specimens were tested immediately after pre-cracking and self-repairing to characterize the initial sealing efficiency through a water-flow test. The same test was repeated at prescribed time intervals to analyze the evolution of the sealing efficiency with the applied mechanical and thermal stresses. The results showed that the proposed system has good stability against the selected damaging actions and confirmed the potential of encapsulated polyurethane for self-healing applications

    Time Domain Analysis of Elastic Nonlinearity in Concrete Using Continuous Waves

    Get PDF
    Concrete and consolidated granular media in general exhibit a strong nonlinear hysteretic elastic behavior when excited by ultrasonic wave perturbations. Due to the sensitivity of their elastic properties to the small changes that can appear in their microstructure, the dynamic stress-strain relationship considered at low strains is affected by the presence of microcracks and hence the progression of damage. Tracking the nonlinear behavior can be made through the dependence on the excitation amplitude of the amplitude of higher order harmonics or of the resonance frequency of the sample. The present chapter shows a time domain analysis of elastic nonlinearity based on the break of the superposition principle when ultrasonic continuous waves are propagating in concrete samples. The latter, which can be of different microstructures (grain sizes, mortar, or polymer matrix), helps to understand the physical mechanisms involved in the different nonlinear elastic responses

    Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems

    Get PDF
    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems

    An Experimental Validation of Phase-Based Motion Magnification for Structures with Developing Cracks and Time-Varying Configurations

    Get PDF
    In this study, Computer Vision and Phase-Based Motion Magnification (PBMM) are validated for continuous Structural Health Monitoring (SHM) purposes. The aim is to identify the exact instant of occurrence for damage or abrupt structural changes from video-extracted, very low amplitude (barely visible) vibrations. The study presents three experimental datasets: a box beam with multiple saw cuts of different lengths and angles, a beam with a full rectangular cross section and a mass added at the tip, and the spar of a prototype High-Aspect-Ratio wing. Both mode-shape- and frequency-based approaches are considered, showing the potential to identify the severity and position of the damage as well A high-definition, high-speed camera and a low-cost commercial alternative have been successfully utilised for these video acquisitions. Finally, the technique is also preliminarily tested for outdoor applications with smartphone cameras

    Influence of the patellar button thickness on the knee flexion after total knee arthroplasty

    Get PDF
    Purpose: One of the main problems of knee replacement is the limit of knee flexion. This study focuses on the knee implant and the patellar component currently in use in total knee arthroplasty, analyzing the influence of patellar thickness on the degree of knee flexion following surgery. Methods: A kinematics study was performed to evaluate whether an optimal patellar thickness can be identified, which enables the maximum flexion angle to be achieved. Using TC images, a healthy model was built. On this basis, a model of a knee joint which had undergone total knee arthroplasty using a Legion PS prosthesis was constructed. Initially, the standard thickness of patellar implant (9 mm) was used to build the model; then several different patellar implant thicknesses (in the range of 5–15 mm) were analyzed. Results: The results show a non-linear trend: a button thickness of less than 9 mm does not change the flexion angle, whereas a button thickness of over 9 mm results in a loss of flexion. The flexion loss is significant in the first two additions of thicknesses but negligible in the last ones. Conclusions: In the case studied, flexion reduction is not linearly proportional to the patellar thickness. The outcome of total knee arthroplasty is considered to be satisfactory with the standard patellar button. The results of this study could be used to compare the kinematics with other total prosthesis and patellar implants, and should enable the optimization of the patellar residue bone thickness to obtain deep flexion

    Durability of self-healing cementitious systems with encapsulated polyurethane evaluated with a new pre-standard test method

    Get PDF
    This work reports on the self-healing capabilities of mortar specimens with polyurethane encapsulated in two types of cementitious macro-capsules, by comparison with the performance of mortar specimens using the same healing agent encapsulated in glass capsules, as tested in an inter-laboratory testing campaign following a pre-standard procedure. This comparison was performed with a twofold objective of checking the robustness of such pre-standard procedure for varying types of capsules and testing the effectiveness of a new type of cementitious capsule that has never been used before in durability tests. The testing procedure was developed in the framework of the EU COST Action SARCOS. First, the specimens were pre-cracked via three-point bending followed by an active crack width control technique. Then, the self-healing effect was characterised in terms of water permeability reduction. The cementitious capsules offered equivalent or better performance compared to the glass capsules used in the inter-laboratory testing. The average sealing efficiency for the specimens containing cementitious capsules ranged from 54 to 74%, while for glass macro-capsules it was equal to 56%. It was also observed that when applying the pre-standard procedure to test specimens containing capsules with comparable size and geometric arrangement, the same results were obtained in different repetitions of the test. The results obtained confirmed the possibility to use the cementitious capsules as a valid macro-encapsulation system, offering additional advantages compared to glass capsules. The repeatability of the results corroborated the robustness of the adopted testing procedure, highlighting its potential for further standardisation

    Accelerated carbonation of ordinary Portland cement paste and its effects on microstructure and transport properties

    Get PDF
    Coupling of carbonation and chlorides ingress mechanisms is very common in concrete under certain exposure conditions such as coastal environments. The aggravation/ mitigation of corrosion by the existence of carbonation lies on the fact that microstructural changes due to carbonation result in changes on the transport properties of the material. In this study we investigate and quantify evolving transport properties of ordinary Portland cement paste, such as porosity, tortuosity and intrinsic permeability. Dual X-ray micro computed tomography (micro CT) is used for the quantification of porosity. Furthermore Dynamic Vapour Sorption (DVS) measurements are carried out to resolve water retention and relative permeability curves. The authors expect to provide insights into the mechanisms of accelerated carbonation in both types of cement paste, as well as data for input and validation of numerical and analytical models on this degradation phenomenon

    “Materiale edilizio ottenuto da attivazione alcalina di minerali contenuti in prodotti e residui da attività estrattiva e lavorativa e processo di produzione di un tale materiale edilizio"

    Get PDF
    L'invenzione si riferisce a un materiale edilizio ottenuto da attivazione alcalina di minerali contenuti in prodotti e residui da attività estrattiva e lavorativa. La presente invenzione si riferisce altresì a un processo di produzione di tale materiale edilizio. In particolare, la presente invenzione si riferisce ai minerali presenti nei fanghi provenienti dal taglio di materiali lapidei ricchi di silicati o dall’impiego di altri prodotti di lavorazione ed estrazione da cava, quali ad esempio le cosiddette materie prime secondarie “MPS” costituite da scarti di lavorazione delle materie prime o dal recupero e dal riciclaggio dei rifiuti

    Effects of the Manufacturing Methods on the Mechanical Properties of a Medical-Grade Copolymer Poly(L-Lactide-co-D,L-Lactide) and Poly(L-Lactide-co-ɛ-Caprolactone) Blend

    Get PDF
    11openopenMariana Rodriguez Reinoso; Marco Civera; Vito Burgio; Annalisa Chiappone; Oliver Grimaldo Ruiz; Alessandra D'Anna; Carmela Riccio; Ignazio Roppolo; Alberto Frache; Paola Antonaci; Cecilia SuraceRODRIGUEZ REINOSO, Mariana; Civera, Marco; Burgio, Vito; Chiappone, Annalisa; GRIMALDO RUIZ, Oliver; D'Anna, Alessandra; Riccio, Carmela; Roppolo, Ignazio; Frache, Alberto; Antonaci, Paola; Surace, Cecili
    • 

    corecore