13 research outputs found

    Microencapsulated fluorescent pH probe as implantable sensor for monitoring the physiological state of fish embryos

    Get PDF
    In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo’s physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity

    Parallel in vivo monitoring of pH in gill capillaries and muscles of fishes using microencapsulated biomarkers

    Get PDF
    Tracking physiological parameters in different organs within the same organism simultaneously and in real time can provide an outstanding representation of the organism's physiological status. The state-ofthe-Art technique of using encapsulated fluorescent molecular probes (microencapsulated biomarkers) is a unique tool that can serve as a platform for the development of new methods to obtain in vivo physiological measurements and is applicable to a broad range of organisms. Here, we describe a novel technique to monitor the pH of blood inside the gill capillaries and interstitial fluid of muscles by using microencapsulated biomarkers in a zebrafish model. The functionality of the proposed technique is shown by the identification of acidification under anesthesia-induced coma and after death. The pH in muscles reacts to hypoxia faster than that in the gill bloodstream, which makes both parameters applicable as markers of either local or bodily reactions

    >

    No full text

    >

    No full text

    Description of pH-sensitive MBMs used.

    No full text
    <p>(a) General scheme of preparation of MBMs using the LbL method: co-precipitation of SNARF-1-D (purple) into porous CaCO<sub>3</sub> cores (yellow); LbL assembly of microcapsule shell around the cores (only three layers of negatively charged polymer, three layers of positively charged polymer and final biocompatible layer are depicted); and dissolution of cores. (b) SEM image of porous CaCO<sub>3</sub> cores with incorporated SNARF-1-D. (c) Prepared MBMs under confocal laser scanning microscope LSM 700. (d) Examples of fluorescence spectra of microencapsulated SNARF-1-D with varying pH. (e) Calibration curve of MBMs containing SNARF-1-D with varying pH was built based on median values (emphasized by larger dark blue points); original values are also depicted (smaller light blue points).</p

    Reconfigurable Laser-Stimulated Lock-In Thermography for Surface Micro-Crack Detection

    No full text
    Surface crack detection and sizing is essential for the manufacturing and maintenance of engines, run parts, and other metal elements of aircrafts. Among various non-destructive detection methods, the fully non-contact and non-intrusive technique based on laser-stimulated lock-in thermography (LLT) has recently attracted a lot of attention from the aerospace industry. We propose and demonstrate a system of reconfigurable LLT for three-dimensional surface crack detection in metal alloys. For large area inspection, the multi-spot LLT can speed up the inspection time by a factor of the number of spots. The minimum resolved size of micro-holes is ~50 µm in diameter limited by the magnification of the camera lens. We also study the crack length ranging from 0.8 to 3.4 mm by varying the modulation frequency of LLT. An empirical parameter related to the thermal diffusion length is found to show the linear dependence with the crack length. With the proper calibration, this parameter can be used to predict the sizing of the surface fatigue cracks. Reconfigurable LLT allows us to quickly locate the crack position and accurately measure its dimensions. This method is also applicable to the non-destructive detection of surface or sub-surface defect in other materials used in various industries

    Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots

    No full text
    We designed and fabricated two new nanostructured biosensing chips, with which the sensitive detection of prostate specific antigen (PSA) as low as 100 pg ml−1 can be achieved, by measuring the plasmon enhanced fluorescence through a conventional dark field microscope. The gold nanostructure arrays, one with gold nanopillars of 140 nm, the other with gold nanoholes of 140 nm, were fabricated via nanoimprinting onto glass substrate, as localized surface plasmon resonance (LSPR) generators to enhance the fluorescent emission of fluorophore, e.g. quantum dot (QD). A sandwich bioassay of capture anti-PSA antibody (cAb)/PSA/detection anti-PSA (dAb) labeled by QD-655 was established on the nanostructures, and the perfect LSPR excitation distance (10–15 nm) between the nanostructure and QD-655 was simulated and controlled by a cleft cAb fragment and streptavidin modified QD. QD was chosen in this study due to its photo stability, broad Stokes shift, and long lifetime. As far as we know, this is the first time that QD is applied for PSA detection on the uniform nanostructured sensing chips based on the LSPR enhanced fluorescence. Due to the miniaturized nanoarray sensing chip (1.8 mm × 1.8 mm), the convenience and specificity for the detection of PSA via the sandwich assay, and the high optical detection sensitivity, the platform has great potential for the development of a portable point-of-care (POC) system for outpatient diagnosis and treatment monitoring.ASTAR (Agency for Sci., Tech. and Research, S’pore

    Layer-by-Layer Assembled Multilayer Shells for Encapsulation and Release of Fragrance

    No full text
    Layer-by-layer assembled shells are prospective candidates for encapsulation, stabilization, storage, and release of fragrances. A shell comprising four alternative layers of a protein and a polyphenol is employed to encapsulate the dispersed phase of a fragrance-containing oil-in-water emulsion. The model fragrance used in this work consists of 10 ingredients, covering a range of typically employed aroma molecules, all premixed in equal mass and with sunflower oil acting as the base. The encapsulated emulsion is stable after 2 months of storage at 4 °C as revealed by static light scattering and confocal laser scanning microscopy. Gas chromatography/mass spectrometry data show that the encapsulation efficiency of 8 out of 10 fragrance ingredients depends on the water solubility: the less water-soluble an ingredient, the more of it is encapsulated. The amount of these fragrance ingredients remaining encapsulated decreases linearly upon emulsion incubation at 40 °C and the multilayer shell does not hinder their release. The other two fragrance ingredients having the lowest saturation vapor pressure demonstrate sustained release over 5 days of incubation at 40 °C. The composition of released fragrance remains almost constant over 3 days of incubation, upon further incubation it becomes enriched with these two ingredients when others start to be depleted

    Photoconversion of spiropyran to merocyanine in a monolayer observed using nanosecond pump-probe Brewster angle reflectometry

    No full text
    A new apparatus for nanosecond-time-resolved Brewster angle reflectometry is described that can be used to measure transient angle-resolved reflectivity changes in thin films andmonolayers in a single pulsed laser shot. In order to achieve this, a cylindrical lens is placed in the probe beam path replacing the goniometer that is usually used for angular scanning in other systems. Using two synchronized nanosecond pulsed lasers in pump-probe configuration it is possible to measure the kinetics of photoinduced conformational changes by altering the delay between pump and probe pulses. The system was used to observe nanosecond time-resolved photodynamics in a spiropyran monolayer at the air-water interface. After UV excitation the spiropyran converted to its merocyanine form in two stages. The first stage occurred with a timescale close to the instrument time resolution (tens of nanoseconds) whereas the second stage occurred over a few hundred nanoseconds

    The Efficacy of Plant-Based Ionizers in Removing Aerosol for COVID-19 Mitigation

    No full text
    Small-sized droplets/aerosol transmission is one of the factors responsible for the spread of COVID-19, in addition to large droplets and surface contamination (fomites). While large droplets and surface contamination can be relatively easier to deal with (i.e., using mask and proper hygiene measures), aerosol presents a different challenge due to their ability to remain airborne for a long time. This calls for mitigation solutions that can rapidly eliminate the airborne aerosol. Pre-COVID-19, air ionizers have been touted as effective tools to eliminate small particulates. In this work, we sought to evaluate the efficacy of a novel plant-based ionizer in eliminating aerosol. It was found that factors such as the ion concentration, humidity, and ventilation can drastically affect the efficacy of aerosol removal. The aerosol removal rate was quantified in terms of ACH (air changes per hour) and CADR- (clean air delivery rate-) equivalent unit, with ACH as high as 12 and CADR as high as 141 ft3/minute being achieved by a plant-based ionizer in a small isolated room. This work provides an important and timely guidance on the effective deployment of ionizers in minimizing the risk of COVID-19 spread via airborne aerosol, especially in a poorly-ventilated environment
    corecore