12 research outputs found

    Q^2-Dependence of the Proton's G_1 Structure Function Sum Rule

    Full text link
    We study the Q2Q^2 variation of the first moment of the nucleon's spin-dependent structure function G1G_1. As Q20Q^2 \rightarrow 0 the moment is determined by the low energy theorem for Compton scattering. In the deep-inelastic region the moment is calculated using twist expansion to order 1/Q21/Q^2. Based on these limits, we construct a formula which smoothly interpolates between the two regions.Comment: (revised), 8 pages in REVTEX, 1 figure, MIT-CTP-223

    Immune-metabolic genesis of pathological processes

    Get PDF
    This article deals with metabolic-immune processes at rest and under stress conditions, which, in turn, results in the development of immune-dependent and immune-associated disorders. The authors also analyzed metabolic effects of immunomodulators. Based on the analysis of the literature and own clinical and experimental data, the authors identified the ability of metabolic factors to regulate immunological processe

    Efficient Strict-Binning Particle-in-Cell Algorithm for Multi-Core SIMD Processors

    Get PDF
    International audienceParticle-in-Cell (PIC) codes are widely used for plasma simulations. On recent multi-core hardware, performance of these codes is often limited by memory bandwidth. We describe a multi-core PIC algorithm that achieves close-to-minimal number of memory transfers with the main memory, while at the same time exploiting SIMD instructions for numerical computations and exhibiting a high degree of OpenMP-level parallelism. Our algorithm keeps particles sorted by cell at every time step, and represents particles from a same cell using a linked list of fixed-capacity arrays, called chunks. Chunks support either sequential or atomic insertions, the latter being used to handle fast-moving particles. To validate our code, called Pic-Vert, we consider a 3d electrostatic Landau-damping simulation as well as a 2d3v transverse instability of magnetized electron holes. Performance results on a 24-core Intel Sky-lake hardware confirm the effectiveness of our algorithm, in particular its high throughput and its ability to cope with fast moving particles

    The Spin Structure of the Nucleon

    Full text link
    We present an overview of recent experimental and theoretical advances in our understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure

    Role of Detective Activities in the System of Detection Means used to Trace the Suspect (Accused)

    No full text
    The article examines the criminal procedure nature of the detective activities and their place in the system of detection means. The authors suggest a novel system of detection means used to trace the suspects (accused)

    Load balancing for particle-in-cell plasma simulation on multicore systems

    No full text
    Particle-in-cell plasma simulation is an important area of computational physics. The particle-in-cell method naturally allows parallel processing on distributed and shared memory. In this paper we address the problem of load balancing on multicore systems. While being well-studied for many traditional applications of the method, it is a relevant problem for the emerging area of particle-in-cell simulations with account for effects of quantum electrodynamics. Such simulations typically produce highly non-uniform, and sometimes volatile, particle distributions, which could require custom load balancing schemes. In this paper we present a computational evaluation of several standard and custom load balancing schemes for the particle-in-cell method on a high-end system with 96 cores on shared memory. We use a test problem with static non-uniform particle distribution and a real problem with account for quantum electrodynamics effects, which produce dynamically changing highly non-uniform distributions of particles and workload. For these problems the custom schemes result in increase of scaling efficiency by up to 20% compared to the standard OpenMP schemes

    Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data

    No full text
    Alternative splicing is one of the main regulation pathways in living cells beyond simple changes in the level of protein expression. Most of the approaches proposed in proteomics for the identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of the sample under study, which is not always available, especially in the case of the re-analysis of previously acquired data. Herein, we developed new algorithms for the identification and validation of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples under study. The bioinformatic approaches were tested on the results of proteome analysis of human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied was performed against the database generated from all known transcripts (RefSeq) and the one composed of peptide sequences, which included all biologically possible combinations of exons. The identifications were filtered using the prediction of both retention times and relative intensities of fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to the discovered alternative splicing events were additionally examined for artifacts. Selected splicing events were further validated at the mRNA level by quantitative PCR

    Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data

    No full text
    Alternative splicing is one of the main regulation pathways in living cells beyond simple changes in the level of protein expression. Most of the approaches proposed in proteomics for the identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of the sample under study, which is not always available, especially in the case of the re-analysis of previously acquired data. Herein, we developed new algorithms for the identification and validation of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples under study. The bioinformatic approaches were tested on the results of proteome analysis of human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied was performed against the database generated from all known transcripts (RefSeq) and the one composed of peptide sequences, which included all biologically possible combinations of exons. The identifications were filtered using the prediction of both retention times and relative intensities of fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to the discovered alternative splicing events were additionally examined for artifacts. Selected splicing events were further validated at the mRNA level by quantitative PCR
    corecore