599 research outputs found

    Forward Modelling of Standing Slow Modes in Flaring Coronal Loops

    Full text link
    Standing slow mode waves in hot flaring loops are exclusively observed in spectrometers and are used to diagnose the magnetic field strength and temperature of the loop structure. Due to the lack of spatial information, the longitudinal mode cannot be effectively identified. In this study, we simulate standing slow mode waves in flaring loops and compare the synthesized line emission properties with SUMER spectrographic and SDO/AIA imaging observations. We find that the emission intensity and line width oscillations are a quarter period out of phase with Doppler shift velocity both in time and spatial domain, which can be used to identify a standing slow mode wave from spectroscopic observations. However, the longitudinal overtones could be only measured with the assistance of imagers. We find emission intensity asymmetry in the positive and negative modulations, this is because the contribution function pertaining to the atomic emission process responds differently to positive and negative temperature variations. One may detect \textbf{half} periodicity close to the loop apex, where emission intensity modulation is relatively small. The line-of-sight projection affects the observation of Doppler shift significantly. A more accurate estimate of the amplitude of velocity perturbation is obtained by de-projecting the Doppler shift by a factor of 12θ/π1-2\theta/\pi rather than the traditionally used cosθ\cos\theta. \textbf{If a loop is heated to the hotter wing, the intensity modulation could be overwhelmed by background emission, while the Doppler shift velocity could still be detected to a certain extent.Comment: 18 pages, 10 figures, Astrophysics Journa

    Tribological behaviour of polyalphaolefins: wear and rolling contact fatigue tests

    Get PDF
    Polyalphaolefin fluids are gaining rapid acceptance as high-performance lubricants and functional fluids because they have certain inherent, and highly desirable, characteristics relative to mineral oils. One of these characteristics is their low toxicity. It combined with excellent viscometrics and lubricity, have made low-viscosity PAO fluids an important component in lubricant formulations. Typical data found in product specifications for lubricants are the kinematic viscosity and the viscosity index. These values do not give enough information to choose the optimum lubricant for a lubricated contact. In mechanical systems take place rolling, sliding and rolling/sliding contacts, therefore lubricants have to work the best possible in these operation conditions. In this study are experimentally determined the L50, L10 and Weibull´s slope () of polyalphaolefins with two different viscosities. This test was made on a four-ball machine (Stanhope Seta). Wear test also was made on a four-ball tester (Roxana) in order to measure the wear scar diameter (WSD), and the flash temperature parameter (FTP). Lubricants were identified through infrared spectroscopy, and ball´s pittings were observed with SEM

    Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space

    Get PDF
    We find lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u) = - \int_{\rr^d} K(x,y) (u(y)-u(x)) \, dy. Here we consider a kernel K(x,y)=ψ(ya(x))+ψ(xa(y))K(x,y)=\psi (y-a(x))+\psi(x-a(y)) where ψ\psi is a bounded, nonnegative function supported in the unit ball and aa means a diffeomorphism on \rr^d. A simple example being a linear function a(x)=Axa(x)= Ax. The upper and lower bounds that we obtain are given in terms of the Jacobian of aa and the integral of ψ\psi. Indeed, in the linear case a(x)=Axa(x) = Ax we obtain an explicit expression for the first eigenvalue in the whole \rr^d and it is positive when the the determinant of the matrix AA is different from one. As an application of our results, we observe that, when the first eigenvalue is positive, there is an exponential decay for the solutions to the associated evolution problem. As a tool to obtain the result, we also study the behaviour of the principal eigenvalue of the nonlocal Dirichlet problem in the ball BRB_R and prove that it converges to the first eigenvalue in the whole space as RR\to \infty

    Decay estimates for nonlinear nonlocal diffusion problems in the whole space

    Get PDF
    In this paper we obtain bounds for the decay rate in the L^r (\rr^d)-norm for the solutions to a nonlocal and nolinear evolution equation, namely, u_t(x,t) = \int_{\rr^d} K(x,y) |u(y,t)- u(x,t)|^{p-2} (u(y,t)- u(x,t)) \, dy, with x \in \rr^d, t>0 t>0. Here we consider a kernel K(x,y)K(x,y) of the form K(x,y)=ψ(ya(x))+ψ(xa(y))K(x,y)=\psi (y-a(x))+\psi(x-a(y)), where ψ\psi is a bounded, nonnegative function supported in the unit ball and aa is a linear function a(x)=Axa(x)= Ax. To obtain the decay rates we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u) = - \int_{\rr^d} K(x,y) |u(y)-u(x)|^{p-2} (u(y)-u(x)) \, dy, with 1p<1 \leq p < \infty. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole \rr^d: \lambda_{1,p} (\rr^d) = 2(\int_{\rr^d} \psi (z) \, dz)|\frac{1}{|\det{A}|^{1/p}} -1|^p. Moreover, we deal with the p=p=\infty eigenvalue problem studying the limit as pp \to \infty of λ1,p1/p\lambda_{1,p}^{1/p}

    Reliable Lifespan Evaluation of a Remote Environment Monitoring System Based on Wireless Sensor Networks and Global System for Mobile Communications

    Get PDF
    The use of wireless sensor networks (WSN) for monitoring physical and chemical variables in large areas allows density and frequency measurements which have been unavailable to date in classical measurement systems. To fully take advantage of this technology in a particular application, besides an accurate design and selection of all the components involved in its operation, it is essential to dispose of reliable lifetime estimation prior to deployment. This paper presents an experimental approach to determine the actual lifetime of such battery-operated systems, making use of a custom WSN architecture, and for different batteries technologies. To render a reliable evaluation, the energy consumption of the sensor nodes under their different operation modes, in correlation with the battery characteristics and the voltage regulation system, is jointly considered. The result is a complete and practical lifetime model, whose appropriate performance has been validated in a real deployment scenario

    The multi-thermal and multi-stranded nature of coronal rain

    Full text link
    In this work, we analyse coordinated observations spanning chromospheric, TR and coronal temperatures at very high resolution which reveal essential characteristics of thermally unstable plasmas. Coronal rain is found to be a highly multi-thermal phenomenon with a high degree of co-spatiality in the multi-wavelength emission. EUV darkening and quasi-periodic intensity variations are found to be strongly correlated to coronal rain showers. Progressive cooling of coronal rain is observed, leading to a height dependence of the emission. A fast-slow two-step catastrophic cooling progression is found, which may reflect the transition to optically thick plasma states. The intermittent and clumpy appearance of coronal rain at coronal heights becomes more continuous and persistent at chromospheric heights just before impact, mainly due to a funnel effect from the observed expansion of the magnetic field. Strong density inhomogeneities on spatial scales of 0.2"-0.5" are found, in which TR to chromospheric temperature transition occurs at the lowest detectable scales. The shape of the distribution of coronal rain widths is found to be independent of temperature with peaks close to the resolution limit of each telescope, ranging from 0.2" to 0.8". However we find a sharp increase of clump numbers at the coolest wavelengths and especially at higher resolution, suggesting that the bulk of the rain distribution remains undetected. Rain clumps appear organised in strands in both chromospheric and TR temperatures, suggesting an important role of thermal instability in the shaping of fundamental loop substructure. We further find structure reminiscent of the MHD thermal mode. Rain core densities are estimated to vary between 2x10^{10} cm^{-3} and 2.5x10^{11} cm^{-3} leading to significant downward mass fluxes per loop of 1-5x10^{9} g s^{-1}, suggesting a major role in the chromosphere-corona mass cycle.Comment: Abstract is only short version. See paper for full. Countless pages, figures (and movies, but not included here). Accepted for publication in the Astrophysical Journa

    Forward modeling of standing slow modes in flaring coronal loops

    Get PDF
    Standing slow-mode waves in hot flaring loops are exclusively observed in spectrometers and are used to diagnose the magnetic field strength and temperature of the loop structure. Owing to the lack of spatial information, the longitudinal mode cannot be effectively identified. In this study, we simulate standing slow-mode waves in flaring loops and compare the synthesized line emission properties with Solar Ultraviolet Measurements of Emitted Radiation spectrographic and Solar Dynamics Observatory/Atmospheric Imaging Assembly imaging observations. We find that the emission intensity and line width oscillations are a quarter period out of phase with Doppler shift velocity in both time and spatial domain, which can be used to identify a standing slow-mode wave from spectroscopic observations. However, the longitudinal overtones could only be measured with the assistance of imagers. We find emission intensity asymmetry in the positive and negative modulations; this is because the contribution function pertaining to the atomic emission process responds differently to positive and negative temperature variations. One may detect half periodicity close to the loop apex, where emission intensity modulation is relatively small. The line-of-sight projection affects the observation of Doppler shift significantly. A more accurate estimate of the amplitude of velocity perturbation is obtained by de-projecting the Doppler shift by a factor of 1–2θ/π rather than the traditionally used cosθ. If a loop is heated to the hotter wing, the intensity modulation could be overwhelmed by background emission, while the Doppler shift velocity could still be detected to a certain extent.Publisher PDFPeer reviewe

    On-disk coronal rain

    Full text link
    Small and elongated, cool and dense blob-like structures are being reported with high resolution telescopes in physically different regions throughout the solar atmosphere. Their detection and the understanding of their formation, morphology and thermodynamical characteristics can provide important information on their hosting environment, especially concerning the magnetic field, whose understanding constitutes a major problem in solar physics. An example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium observed in active region loops, which consists of cool and dense chromospheric blobs falling along loop-like paths from coronal heights. So far, only off-limb coronal rain has been observed and few reports on the phenomenon exist. In the present work, several datasets of on-disk H{\alpha} observations with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are analyzed. A special family of on-disk blobs is selected for each dataset and a statistical analysis is carried out on their dynamics, morphology and temperatures. All characteristics present distributions which are very similar to reported coronal rain statistics. We discuss possible interpretations considering other similar blob-like structures reported so far and show that a coronal rain interpretation is the most likely one. Their chromospheric nature and the projection effects (which eliminate all direct possibility of height estimation) on one side, and their small sizes, fast dynamics, and especially, their faint character (offering low contrast with the background intensity) on the other side, are found as the main causes for the absence until now of the detection of this on-disk coronal rain counterpart.Comment: 18 pages, 10 figures. Accepted for Solar Physic
    corecore