592 research outputs found

    Simulating the in situ condensation process of solar prominences

    Get PDF
    Prominences in the solar corona are a hundredfold cooler and denser than their surroundings, with a total mass of 1013 up to 1015 g. Here, we report on the first comprehensive simulations of three-dimensional, thermally and gravitationally stratified magnetic flux ropes where in situ condensation to a prominence occurs due to radiative losses. After a gradual thermodynamic adjustment, we witness a phase where runaway cooling occurs while counter-streaming shearing flows drain off mass along helical field lines. After this drainage, a prominence-like condensation resides in concave upward field regions, and this prominence retains its overall characteristics for more than two hours. While condensing, the prominence establishes a prominence-corona transition region where magnetic field-aligned thermal conduction is operative during the runaway cooling. The prominence structure represents a force-balanced state in a helical flux rope. The simulated condensation demonstrates a right-bearing barb, as a remnant of the drainage. Synthetic images at extreme ultraviolet wavelengths follow the onset of the condensation, and confirm the appearance of horns and a three-part structure for the stable prominence state, as often seen in erupting prominences. This naturally explains recent Solar Dynamics Observatory views with the Atmospheric Imaging Assembly on prominences in coronal cavities demonstrating horns.Publisher PDFPeer reviewe

    Extreme pressure behaviour of newly formulated oil-in-water emulsions

    Get PDF
    Oil-in-water (O/W) emulsions are broadly used in metal-machining processes, where combined lubrication and refrigeration are needed, such as in cutting, rolling, or grinding. These fluids consist of tiny oil droplets in water stabilised by small amounts of emulsifiers, namely surfactants. In an emulsion, oil is responsible for the lubricating properties, whereas water provides heat dissipation and fire resistance. Normally, emulsifiable metalworking oils are used in an oil concentration between 2 and 5 vol. %, depending on the application. Despite their wide use, the lubrication mechanisms of o/w emulsions have not been fully understood, mainly because of their complexity. Previous studies on oil-in-water emulsions showed that, in order to form thick lubricant films, oil droplets must wet the metal surfaces, displacing water. The ability of oil to wet is strongly dependent on the concentration of surfactant. Surfactant molecules tend to adsorb preferentially at the interface, modifying the nature of the layers adjacent to the metal surfaces and, thus, playing a key role in processes such as wettability, corrosion, or friction, as well as emulsion stability. The aim of this work is to study the influence of concentration of two different emulsifiers (anionic and non-inonic) on the wettability and extreme pressure properties of an oil-in-water emulsion. A mixture of a synthetic polyalphaolefin and a trimethylol propane ester was used as the base oil, and the concentrations of emulsifiers were below, equal to, and above their critical micellar concentrations (CMC). Extreme pressure tests (ASTM D 2783), which try to simulate the operating conditions of high speeds and pressures taking place in cutting processes, and contact angle measurements were carried out in order to establish a relationship between both properties and to evaluate the performance of these emulsions as lubricants

    Aroma composition of commercial truffle flavoured oils: does it really smell like truffle?

    Get PDF
    The present study analyzes the aromatic and odour volatile profiles of truffle flavoured oils commercialized as “black truffle oil”. The aim of this work is twofold: to define the sensory space associated to these products and to explore the possible fraudulent use of artificial flavouring agents not properly identified on the label. For this purpose, 12 commercial truffle flavoured oils available in the Spanish market were submitted to descriptive sensory analysis by a trained panel. The three oils presenting the most interesting profile (in terms of odour nature and/or complexity) were also analyzed by olfactometric analysis, in order to identify the chemical compounds responsible on their aroma. The correlation of sensory and olfactometric data made it possible to understand some of the sensory differences observed among samples, as well as to identify irregularities with respect to the ingredients labelling of some of the studied samples

    canSAR: an updated cancer research and drug discovery knowledgebase.

    Get PDF
    canSAR (http://cansar.icr.ac.uk) is a publicly available, multidisciplinary, cancer-focused knowledgebase developed to support cancer translational research and drug discovery. canSAR integrates genomic, protein, pharmacological, drug and chemical data with structural biology, protein networks and druggability data. canSAR is widely used to rapidly access information and help interpret experimental data in a translational and drug discovery context. Here we describe major enhancements to canSAR including new data, improved search and browsing capabilities, new disease and cancer cell line summaries and new and enhanced batch analysis tools

    Shortgrass Steppe LTER VI: examining ecosystem persistence and responses to global change, 2010-2014 proposal

    Get PDF
    Includes bibliographical references.The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.The Shortgrass Steppe Long-term Ecological Research (SGS-LTER) program focuses on how grassland ecosystems function and persist or change in the face of global change. Our conceptual framework asserts that climate, physiography, grazing, fire and landuse, operating over different spatial and temporal scales, are the dominant determinants of the structure, function, and persistence of the SGS. Using the shortgrass steppe (SGS) ecosystem of the North American Great Plains as a model, we seek to (1) identify the ecological attributes of grasslands that historically have resulted in their persistence and (2) understand these attributes in ways that will allow us to identify area of vulnerability and better forecast the future of grasslands in the face of global change. Given its geographic extent and history, the SGS encapsulates many of the features of a system driven by social-ecological interactions and the vulnerabilities of semiarid grasslands to global change. Our overarching question is: How will structure and function of the SGS respond to expected changes in climate, management, and land-use, and what will be the consequences

    Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption

    Get PDF
    The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the {alpha}5, {alpha}3, and {beta}4 nicotinic acetylcholine receptor (nAChR) subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN) tract is particularly enriched in {alpha}3{beta}4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb) in mice altered nicotine consumption. Given that {beta}4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs) in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of {beta}4 to nicotine receptor activity in the MHb. We screened for missense SNPs that had allele frequencies >0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with {alpha}3. We found that {beta}4A90I and {beta}4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant {beta}4D447Y, significantly increased nicotine-evoked current amplitudes, while {beta}4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS), showed reduced nicotine currents. We employed lentiviruses to express {beta}4 or {beta}4 variants in the MHb. Immunoprecipitation studies confirmed that {beta}4 lentiviral-mediated expression leads to specific upregulation of {alpha}3{beta}4 but not {beta}2 nAChRs in the Mhb. Mice injected with the {beta}4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the {beta}4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the {beta}4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular {beta}4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine consumption in mice

    Gauge-invariant tree-level photoproduction amplitudes with form factors

    Get PDF
    We show how the gauge-invariance formulation given by Haberzettl is implemented in practice for photoproduction amplitudes at the tree level with form factors describing composite nucleons. We demonstrate that, in contrast to Ohta's gauge-invariance prescription, this formalism allows electric current contributions to be multiplied by a form factor, i.e., it does not require that they be treated like bare currents. While different in detail, this nevertheless lends support to previous ad hoc approaches which multiply the Born amplitudes by an overall form factor. Numerical results for kaon photoproduction off the nucleon are given. They show that the gauge procedure by Haberzettl leads to much improved χ2\chi^2 values as compared to Ohta's prescription.Comment: 5 pages, RevTeX, two eps figure

    Detection of supersonic downflows and associated heating events in the transition region above sunspots

    Get PDF
    IRIS data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.33 arcsec. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km/s and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336 \AA, Si IV 1394 \AA, and 1403 \AA, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in AIA, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.Comment: accepted by ApJ
    corecore