19 research outputs found

    Characterisation of S. aureus/MRSA CC1153 and review of mobile genetic elements carrying the fusidic acid resistance gene fusC

    Get PDF
    While many data on molecular epidemiology of MRSA are available for North America, Western Europe and Australia, much less is known on the distribution of MRSA clones elsewhere. Here, we describe a poorly known lineage from the Middle East, CC1153, to which several strains from humans and livestock belong. Isolates were characterised using DNA microarrays and one isolate from the United Arab Emirates was sequenced using Nanopore technology. CC1153 carries agr II and capsule type 5 genes. Enterotoxin genes are rarely present, but PVL is common. Associated spa types include t504, t903 and t13507. PVL-positive CC1153-MSSA were found in Egyptian cattle suffering from mastitis. It was also identified among humans with skin and soft tissue infections in Saudi Arabia, France and Germany. CC1153-MRSA were mainly observed in Arabian Gulf countries. Some isolates presented with a previously unknown SCCmec/SCCfus chimeric element in which a mec B complex was found together with the fusidic acid resistance gene fusC and accompanying genes including ccrA/B-1 recombinase genes. Other isolates carried SCCmec V elements that usually also included fusC. Distribution and emergence of CC1153-MRSA show the necessity of molecular characterization of MRSA that are resistant to fusidic acid. These strains pose a public health threat as they combine resistance to beta-lactams used in hospitals as well as to fusidic acid used in the community. Because of the high prevalence of fusC-positive MRSA in the Middle East, sequences and descriptions of SCC elements harbouring fusC and/or mecA are reviewed. When comparing fusC and its surrounding regions from the CC1153 strain to available published sequences, it became obvious that there are four fusC alleles and five distinct types of fusC gene complexes reminiscent to the mec complexes in SCCmec elements. Likewise, they are associated with different sets of ccrA/B recombinase genes and additional payload that might include entire mec complexes or SCCmec elements

    Molecular typing of ST239-MRSA-III from diverse geographic locations and the evolution of the SCCmec III element during its intercontinental spread

    Get PDF
    ST239-MRSA-III is probably the oldest truly pandemic MRSA strain, circulating in many countries since the 1970s. It is still frequently isolated in some parts of the world although it has been replaced by other MRSA strains in, e.g., most of Europe. Previous genotyping work (Harris et al., 2010; Castillo-Ramírez et al., 2012) suggested a split in geographically defined clades. In the present study, a collection of 184 ST239-MRSA-III isolates, mainly from countries not covered by the previous studies were characterized using two DNA microarrays (i) targeting an extensive range of typing markers, virulence and resistance genes and (ii) a SCCmec subtyping array. Thirty additional isolates underwent whole-genome sequencing (WGS) and, together with published WGS data for 215 ST239-MRSA-III isolates, were analyzed using in-silico analysis for comparison with the microarray data and with special regard to variation within SCCmec elements. This permitted the assignment of isolates and sequences to 39 different SCCmec III subtypes, and to three major and several minor clades. One clade, characterized by the integration of a transposon into nsaB and by the loss of fnbB and splE was detected among isolates from Turkey, Romania and other Eastern European countries, Russia, Pakistan, and (mainly Northern) China. Another clade, harboring sasX/sesI is widespread in South-East Asia including China/Hong Kong, and surprisingly also in Trinidad & Tobago. A third, related, but sasX/sesI-negative clade occurs not only in Latin America but also in Russia and in the Middle East from where it apparently originated and from where it also was transferred to Ireland. Minor clades exist or existed in Western Europe and Greece, in Portugal, in Australia and New Zealand as well as in the Middle East. Isolates from countries where this strain is not epidemic (such as Germany) frequently are associated with foreign travel and/or hospitalization abroad. The wide dissemination of this strain and the fact that it was able to cause a hospital-borne pandemic that lasted nearly 50 years emphasizes the need for stringent infection prevention and control and admission screening

    Diversity of Staphylococcus aureus Isolates in European Wildlife

    Get PDF
    Staphylococcus aureus is a well-known colonizer and cause of infection among animals and it has been described from numerous domestic and wild animal species. The aim of the present study was to investigate the molecular epidemiology of S. aureus in a convenience sample of European wildlife and to review what previously has been observed in the subject field. 124 S. aureus isolates were collected from wildlife in Germany, Austria and Sweden; they were characterized by DNA microarray hybridization and, for isolates with novel hybridization patterns, by multilocus sequence typing (MLST). The isolates were assigned to 29 clonal complexes and singleton sequence types (CC1, CC5, CC6, CC7, CC8, CC9, CC12, CC15, CC22, CC25, CC30, CC49, CC59, CC88, CC97, CC130, CC133, CC398, ST425, CC599, CC692, CC707, ST890, CC1956, ST2425, CC2671, ST2691, CC2767 and ST2963), some of which (ST2425, ST2691, ST2963) were not described previously. Resistance rates in wildlife strains were rather low and mecA-MRSA isolates were rare (n = 6). mecC-MRSA (n = 8) were identified from a fox, a fallow deer, hares and hedgehogs. The common cattle- associated lineages CC479 and CC705 were not detected in wildlife in the present study while, in contrast, a third common cattle lineage, CC97, was found to be common among cervids. No Staphylococcus argenteus or Staphylococcus schweitzeri-like isolates were found. Systematic studies are required to monitor the possible transmission of human- and livestock- associated S. aureus/MRSA to wildlife and vice versa as well as the possible transmission, by unprotected contact to animals. The prevalence of S. aureus/MRSA in wildlife as well as its population structures in different wildlife host species warrants further investigation

    Dissemination of high-level mupirocin-resistant CC22-MRSA-IV in Saxony

    No full text
    Mupirocin is used for eradicating methicillin-resistant (MRSA) in nasal colonization. A plasmid-borne gene, , is associated with high-level mupirocin resistance. Despite the fact that, among all MRSA from a tertiary care center in the German state of Saxony, the prevalence of , encoding high-level mupirocin resistance, was approximately 1% over a 15-year period from 2000–2015, a sharp increase to nearly 20% was observed in 2016/2017. DNA microarray profiling revealed that this was due to the dissemination of a variant of CC22-MRSA-IV (“Barnim Epidemic Strain” or “UK-EMRSA-15”), which, in addition to , harbors , , , and – in most isolates – (C). In order to prevent therapy failures and a further spread of this strain, the use of mupirocin should be more stringently controlled as well as guided by susceptibility testing. In addition, MRSA decolonization regimens that rely on other substances, such as betaisodona, polyhexanide or octenidine, should be considered

    Diversity of SCC<i>mec</i> Elements in <i>Staphylococcus aureus</i> as Observed in South-Eastern Germany

    No full text
    <div><p>SCC<i>mec</i> elements are very important mobile genetic elements in Staphylococci that carry beta-lactam resistance genes <i>mecA/mecC</i>, recombinase genes and a variety of accessory genes. Twelve main types and a couple of variants have yet been described. In addition, there are also other SCC elements harbouring other markers. In order to subtype strains of methicillin-resistant <i>S</i>. <i>aureus</i> (MRSA) based on variations within their SCC<i>mec</i> elements, 86 markers were selected from published SCC sequences for an assay based on multiplexed primer extension reactions followed by hybridisation to the specific probes. These included <i>mecA/mecC</i>, <i>fusC</i>, regulatory genes, recombinase genes, genes from ACME and heavy metal resistance loci as well as several genes of unknown function. Hybridisation patterns for published genome or SCC sequences were theoretically predicted. For validation of the microarray based assay and for stringent hybridisation protocol optimization, real hybridization experiments with fully sequenced reference strains were performed modifying protocols until yielded the results were in concordance to the theoretical predictions. Subsequently, 226 clinical isolates from two hospitals in the city of Dresden, Germany, were characterised in detail. Beside previously described types and subtypes, a wide variety of additional SCC types or subtypes and pseudoSCC elements were observed as well as numerous composite elements. Within the study collection, 61 different such elements have been identified. Since hybridisation cannot recognise the localisation of target genes, gene duplications or inversions, this is a rather conservative estimate. Interestingly, some widespread epidemic strains engulf distinct variants with different SCC<i>mec</i> subtypes. Notable examples are ST239-MRSA-III, CC5-, CC22-, CC30-, and CC45-MRSA-IV or CC398-MRSA-V. Conversely, identical SCC elements were observed in different strains with SCC<i>mec</i> IVa being spread among the highest number of Clonal Complexes. The proposed microarray can help to distinguish isolates that appear similar or identical by other typing methods and it can be used as high-throughput screening tool for the detection of putative new SCC types or variants that warrant further investigation and sequencing. The high degree of diversity of SCC elements even within so-called strains could be helpful for epidemiological typing. It also raises the question on scale and speed of the evolution of SCC elements.</p></div

    SCC-associated markers used for this study, sorted alphabetically, references and estimated abundances in MRSA from Dresden (2000–2016; based on prevalence data from Table 1 and [10]).

    No full text
    <p>SCC-associated markers used for this study, sorted alphabetically, references and estimated abundances in MRSA from Dresden (2000–2016; based on prevalence data from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162654#pone.0162654.t001" target="_blank">Table 1</a> and [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162654#pone.0162654.ref010" target="_blank">10</a>]).</p

    Clonal complexes, strains and SCC elements as identified by array hybridisation.

    No full text
    <p>Prevalence data (percentages and absolute numbers) refer to routine MRSA typing from the Dresden University Hospital, 2000—April 2016 (n = 1277).</p

    SCC elements as identified by array hybridisation in this study, reference sequences, their gene contents, distributions across clonal complexes and their estimated abundances in MRSA from Dresden (2000–2016; based on prevalence data from Table 1 and [10]).

    No full text
    <p>SCC elements as identified by array hybridisation in this study, reference sequences, their gene contents, distributions across clonal complexes and their estimated abundances in MRSA from Dresden (2000–2016; based on prevalence data from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162654#pone.0162654.t001" target="_blank">Table 1</a> and [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0162654#pone.0162654.ref010" target="_blank">10</a>]).</p
    corecore