7 research outputs found

    LC-MS based quantification of 2’-ribosylated nucleosides Ar(p) and Gr(p) in tRNA

    Get PDF
    RNA nucleosides are often naturally modified into complex non-canonical structures with key biological functions. Here we report LC-MS quantification of the Ar(p) and Gr(p) 2'-ribosylated nucleosides in tRNA using deuterium labelled standards, and the first detection of Gr(p) in complex fungi

    Salinomycin Derivatives Kill Breast Cancer Stem Cells by Lysosomal Iron Targeting

    No full text
    International audienceSalinomycin ( 1 ) exhibits a large spectrum of biological activities including the capacity to selectively eradicate cancer stem cells (CSC), making it and its derivatives promising candidates for the development of drug leads against CSC. It has been previously shown that salinomycin and its C20‐propargylamine derivative (Ironomycin ( 2 )) accumulate in lysosomes and sequester iron in this organelle. Herein, a library of salinomycin derivatives is reported, including products of C20‐amination, C1‐esterification, C9‐oxidation, and C28‐dehydration. The biological activity of these compounds is evaluated against transformed human mammary epithelial HMLER CD24 low /CD44 high cells, a well‐established model of breast CSC, and HMLER CD24 high /CD44 low cells deprived of CSC properties. Unlike other structural alterations, derivative 4 , which displays a cyclopropylamine at position C20, showed a strikingly low IC 50 value of 23 n m against HMLER CD24 low /CD44 high cells. This study provides highly selective molecules to target the CSC niche, a potential interesting advance for drug development to prevent cancer resistance

    An iron hand over cancer stem cells

    No full text
    International audienceThe paradigm of cancer stem cells (CSCs) defines the existence of cells exhibiting self-renewal and tumor-seeding capacity. These cells have been associated with tumor relapse and are typically resistant to conventional chemotherapeutic agents. Over the past decade, chemical biology studies have revealed a significant number of small molecules able to alter the proliferation of these cells in various settings. The natural product salinomycin has emerged as the most promising anti-CSC agent. However, an explicit mechanism of action has not yet been characterized, in particular due to the pleiotropic responses salinomycin is known for. In this punctum, we describe our recent discovery that salinomycin and the more potent synthetic derivative we named ironomycin sequester lysosomal iron. We found that these compounds, by blocking iron translocation, induce an iron-depletion response leading to a lysosomal degradation of ferritin followed by an iron-mediated lysosomal production of reactive oxygen species (ROS) and a cell death pathway that resembles ferroptosis. These unprecedented findings identified iron homeostasis and iron-mediated processes as potentially druggable in the context of CSCs

    Procedures for the GMP-Compliant Production and Quality Control of [18F]PSMA-1007: A Next Generation Radiofluorinated Tracer for the Detection of Prostate Cancer

    No full text
    Radiolabeled tracers targeting the prostate-specific membrane antigen (PSMA) have become important radiopharmaceuticals for the PET-imaging of prostate cancer. In this connection, we recently developed the fluorine-18-labelled PSMA-ligand [18F]PSMA-1007 as the next generation radiofluorinated Glu-ureido PSMA inhibitor after [18F]DCFPyL and [18F]DCFBC. Since radiosynthesis so far has been suffering from rather poor yields, novel procedures for the automated radiosyntheses of [18F]PSMA-1007 have been developed. We herein report on both the two-step and the novel one-step procedures, which have been performed on different commonly-used radiosynthesisers. Using the novel one-step procedure, the [18F]PSMA-1007 was produced in good radiochemical yields ranging from 25 to 80% and synthesis times of less than 55 min. Furthermore, upscaling to product activities up to 50 GBq per batch was successfully conducted. All batches passed quality control according to European Pharmacopoeia standards. Therefore, we were able to disclose a new, simple and, at the same time, high yielding production pathway for the next generation PSMA radioligand [18F]PSMA-1007. Actually, it turned out that the radiosynthesis is as easily realised as the well-known [18F]FDG synthesis and, thus, transferable to all currently-available radiosynthesisers. Using the new procedures, the clinical daily routine can be sustainably supported in-house even in larger hospitals by a single production batch

    Salinomycin kills cancer stem cells by sequestering iron in lysosomes

    No full text
    International audienceCancer stem cells (CSCs) represent a subset of cells within tumours that exhibit self-renewal properties and the capacity to seed tumours. CSCs are typically refractory to conventional treatments and have been associated to metastasis and relapse. Salinomycin operates as a selective agent against CSCs through mechanisms that remain elusive. Here, we provide evidence that a synthetic derivative of salinomycin, which we named ironomycin (AM5), exhibits a more potent and selective activity against breast CSCs in vitro and in vivo, by accumulating and sequestering iron in lysosomes. In response to the ensuing cytoplasmic depletion of iron, cells triggered the degradation of ferritin in lysosomes, leading to further iron loading in this organelle. Iron-mediated production of reactive oxygen species promoted lysosomal membrane permeabilization, activating a cell death pathway consistent with ferroptosis. These findings reveal the prevalence of iron homeostasis in breast CSCs, pointing towards iron and iron-mediated processes as potential targets against these cells

    Enhanced copper-mediated 18 F-fluorination of aryl boronic esters provides eight radiotracers for PET applications

    No full text
    International audience[18F]FMTEB, [18F]FPEB, [18F]flumazenil, [18F]DAA1106, [18F]MFBG, [18F]FDOPA, [18F]FMT and [18F]FDA are prepared from the corresponding arylboronic esters and [18F]KF/K222 in the presence of Cu(OTf)2py4. The method was successfully applied using three radiosynthetic platforms, and up to 26 GBq of non-carrier added starting activity of 18F-fluoride
    corecore