17 research outputs found

    Phase 1 Study of Two Merozoite Surface Protein 1 (MSP1(42)) Vaccines for Plasmodium falciparum Malaria

    Get PDF
    OBJECTIVES: To assess the safety and immunogenicity of two vaccines, MSP1(42)-FVO/Alhydrogel and MSP1(42)-3D7/Alhydrogel, targeting blood-stage Plasmodium falciparum parasites. DESIGN: A Phase 1 open-label, dose-escalating study. SETTING: Quintiles Phase 1 Services, Lenexa, Kansas between July 2004 and November 2005. PARTICIPANTS: Sixty healthy malaria-naïve volunteers 18–48 y of age. INTERVENTIONS: The C-terminal 42-kDa region of merozoite surface protein 1 (MSP1(42)) corresponding to the two allelic forms present in FVO and 3D7 P. falciparum lines were expressed in Escherichia coli, refolded, purified, and formulated on Alhydrogel (aluminum hydroxide). For each vaccine, volunteers in each of three dose cohorts (5, 20, and 80 μg) were vaccinated at 0, 28, and 180 d. Volunteers were followed for 1 y. OUTCOME MEASURES: The safety of MSP1(42)-FVO/Alhydrogel and MSP1(42)-3D7/Alhydrogel was assessed. The antibody response to each vaccine was measured by reactivity to homologous and heterologous MSP1(42), MSP1(19), and MSP1(33) recombinant proteins and recognition of FVO and 3D7 parasites. RESULTS: Anti-MSP1(42) antibodies were detected by ELISA in 20/27 (74%) and 22/27 (81%) volunteers receiving three vaccinations of MSP1(42)-FVO/Alhydrogel or MSP1(42)-3D7/Alhydrogel, respectively. Regardless of the vaccine, the antibodies were cross-reactive to both MSP1(42)-FVO and MSP1(42)-3D7 proteins. The majority of the antibody response targeted the C-terminal 19-kDa domain of MSP1(42), although low-level antibodies to the N-terminal 33-kDa domain of MSP1(42) were also detected. Immunofluorescence microscopy of sera from the volunteers demonstrated reactivity with both FVO and 3D7 P. falciparum schizonts and free merozoites. Minimal in vitro growth inhibition of FVO or 3D7 parasites by purified IgG from the sera of the vaccinees was observed. CONCLUSIONS: The MSP1(42)/Alhydrogel vaccines were safe and well tolerated but not sufficiently immunogenic to generate a biologic effect in vitro. Addition of immunostimulants to the Alhydrogel formulation to elicit higher vaccine-induced responses in humans may be required for an effective vaccine

    Improved Immunogenicity and Efficacy of the Recombinant 19-Kilodalton Merozoite Surface Protein 1 by the Addition of Oligodeoxynucleotide and Aluminum Hydroxide Gel in a Murine Malaria Vaccine Model

    No full text
    Vaccination of mice with yeast-secreted Plasmodium yoelii-derived 19-kilodalton merozoite surface protein 1 (yMSP1(19)) has been shown to afford protection from challenge with a lethal strain of P. yoelii. Sterile immunity can be achieved when MSP1(19) is emulsified in Freund adjuvant but not when it is adsorbed to aluminum hydroxide gel (alum). Because complete Freund adjuvant is not an acceptable adjuvant for use in humans, alternative adjuvants must be identified for formulating MSP1(19) as a vaccine for use in humans. To determine whether oligodeoxynucleotides with CpG motifs (ODN), reported to be a powerful new class of adjuvants, could enhance the immunogenicity of yMSP1(19), C57BL/6 mice were vaccinated either with yMSP1(19) formulated with Freund adjuvant, with alum, or with ODN plus alum and challenged intravenously with P. yoelii 17XL asexual blood-stage parasites. Adsorption of immunogen and adjuvant to alum was optimized by adjusting buffer (phosphate versus acetate) and pH. We found that the adjuvant combination of ODN plus alum with yMSP1(19), injected intraperitoneally (i.p.), increased immunoglobulin G (IgG) yMSP1(19)-specific antibody production 12-fold over Freund adjuvant given i.p., 3-fold over Freund adjuvant given subcutaneously (s.c.), 300-fold over alum given i.p., and 48-fold over alum given s.c. The predominant antibody isotype in the group receiving alum-ODN-yMSP1(19) was IgG1. Increased antibody levels correlated to protection from a challenge with P. yoelii 17XL. Supernatant cytokine levels of gamma interferon in yMSP1(19)-stimulated splenocytes were dramatically elevated in the alum-ODN-yMSP1(19) group. Interleukin-10 (IL-10) levels were also elevated; however, no IL-5 was detected. The cytokine profile, as well as the predominant IgG1 antibody isotype, suggests the protective immune response was a mixed Th1/Th2 response

    Immunization with a Combination of Merozoite Surface Proteins 4/5 and 1 Enhances Protection against Lethal Challenge with Plasmodium yoelii

    No full text
    It is widely believed that subunit vaccines composed of multiple components will offer greater protection against challenge by malaria, and yet there is little experimental evidence to support this view. We set out to test this proposition in the Plasmodium yoelii challenge system in rodents by comparing the degree of protection conferred by immunization with a mixture of merozoite surface proteins to that conferred by single proteins. We therefore examined a defined protein mixture made of the epidermal growth factor-like domains of P. yoelli merozoite surface protein 1 (MSP1) and MSP4/5, the homologue of P. falciparum MSP4 and MSP5. In the present study we demonstrate that this combination of recombinant proteins dramatically enhances protection against lethal malaria challenge compared to either protein administered alone. Many mice immunized with the MSP4/5 plus MSP1(19) combination did not develop detectable parasitemia after challenge. Combined immunization with MSP1(19) and yMSP4/5, a product characterized by lower protective efficacy, also greatly enhanced protection by reducing peak parasitemias and increasing the numbers of survivors. In some combination trials, levels of antibodies to MSP1(19) were elevated compared to the MSP1(19) alone group; however, improved protection occurred regardless of whether boosting of the anti-MSP1(19) response was observed. Boosting of anti-MSP1(19) did not appear to be due to contaminating endotoxin in the EcMSP4/5 material since enhanced protection was observed in C3H/HeJ mice, which are endotoxin insensitive. Collectively, these experiments show that multiantigen combinations offer enhanced levels of protection against asexual stage infection and suggest that combinations of MSP1, MSP4, and MSP5 should be evaluated further for use in humans

    Effect of CpG Oligodeoxynucleotides on the Immunogenicity of Pfs25, a Plasmodium falciparum Transmission-Blocking Vaccine Antigen

    No full text
    Antibodies directed against Pfs25, a protein present on the surface of zygotes and ookinetes of Plasmodium falciparum, completely block pathogen transmission. We evaluated the immunomodulatory effect of CpG oligodeoxynucleotides (ODN) on the immunogenicity of recombinant Pfs25 (rPfs25) formulated in alum (Al). Immunization of mice with rPfs25 plus CpG ODN improved both the antibody titer (a 30-fold-higher antibody response than that with rPfs25-Al alone) and avidity. Coadministration of CpG ODN dramatically enhanced the titer of immunoglobulin G2A (IgG2a) compared to the titer of the IgG1-dominant response caused by rPfs25-Al alone, and the sera from the CpG ODN-coadministered group completely blocked the transmission of P. falciparum parasites to mosquitoes, as determined by membrane feeding assays. However, transmission-blocking experiments revealed that blocking efficacy was dependent on high-titer antibody levels, independent of isotypes. These results suggest that CpG ODN can be used as an adjuvant to enhance the immunogenicity of rPfs25 as a malaria transmission-blocking vaccine

    In Vitro Studies with Recombinant Plasmodium falciparum Apical Membrane Antigen 1 (AMA1): Production and Activity of an AMA1 Vaccine and Generation of a Multiallelic Response

    No full text
    Apical membrane antigen 1 (AMA1) is regarded as a leading malaria blood-stage vaccine candidate. While the overall structure of AMA1 is conserved in Plasmodium spp., numerous AMA1 allelic variants of P. falciparum have been described. The effect of AMA1 allelic diversity on the ability of a recombinant AMA1 vaccine to protect against human infection by different P. falciparum strains is unknown. We characterize two allelic forms of AMA1 that were both produced in Pichia pastoris at a sufficient economy of scale to be usable for clinical vaccine studies. Both proteins were used to immunize rabbits, singly and in combination, in order to evaluate their immunogenicity and the ability of elicited antibodies to block the growth of different P. falciparum clones. Both antigens, when used alone, elicited high homologous anti-AMA1 titers, with reduced strain cross-reactivity. Similarly, sera from rabbits immunized with a single antigen were capable of blocking the growth of homologous parasite strains at levels theoretically sufficient to clear parasite infections. However, heterologous inhibition was significantly reduced, providing experimental evidence that AMA1 allelic diversity is a result of immune pressure. Encouragingly, rabbits immunized with a combination of both antigens exhibited titers and levels of parasite inhibition as good as those of the single-antigen-immunized rabbits for each of the homologous parasite lines, and consequently exhibited a broadening of allelic diversity coverage
    corecore