3,502 research outputs found
Decomposing Cubic Graphs into Connected Subgraphs of Size Three
Let be the set of connected graphs of size 3. We
study the problem of partitioning the edge set of a graph into graphs taken
from any non-empty . The problem is known to be NP-complete for
any possible choice of in general graphs. In this paper, we assume that
the input graph is cubic, and study the computational complexity of the problem
of partitioning its edge set for any choice of . We identify all polynomial
and NP-complete problems in that setting, and give graph-theoretic
characterisations of -decomposable cubic graphs in some cases.Comment: to appear in the proceedings of COCOON 201
Arthroscopic Anterior Shoulder Stabilization With Incorporation of a Comminuted Bony Bankart Lesion.
Bony Bankart lesions are a common finding in patients with anterior glenohumeral dislocation. Although there are no defined guidelines, small bony Bankart fractures are typically treated arthroscopically with suture anchors. The 2 main techniques used are double- and single-row suture anchor stabilization, with debate over superiority. Biomechanical studies have shown improved reduction and stabilization with the double-row over the single-row suture anchor technique; however, this has not been reported for small or comminuted bony fragments. Both techniques have shown promising preliminary clinical outcomes. In this Technical Note, we describe our preferred technique for arthroscopic instability repair using a single-row all-suture anchor method with the incorporation of a comminuted bony Bankart fragment in the lateral decubitus position
A local prescription for the softening length in self-gravitating gaseous discs
In 2D-simulations of self-gravitating gaseous discs, the potential is often
computed in the framework of "softened gravity" initially designed for N-body
codes. In this special context, the role of the softening length LAMBDA is
twofold: i) to avoid numerical singularities in the integral representation of
the potential (i.e., arising when the relative separation vanishes), and ii) to
acount for stratification of matter in the direction perpendicular to the disc
mid-plane. So far, most studies have considered LAMBDA as a free parameter and
various values or formulae have been proposed without much mathematical
justification. In this paper, we demonstrate by means of a rigorous calculus
that it is possible to define LAMBDA such that the gravitational potential of a
flat disc coincides at order zero with that of a geometically thin disc of the
same surface density. Our prescription for LAMBDA, valid in the local,
axisymmetric limit, has the required properties i) and ii). It is mainly an
analytical function of the radius and disc thickness, and is sensitive to the
vertical stratification. For mass density profiles considered (namely, profiles
expandable over even powers of the altitude), we find that LAMBDA : i) is
independant of the numerical mesh, ii) is always a fraction of the local
thickness H, iii) goes through a minimum at the singularity (i.e., at null
separation), and iv) is such that 0.13 < LAMBDA/H < 0.29 typically (depending
on the separation and on density profile). These results should help us to
improve the quality of 2D- and 3D-simulations of gaseous discs in several
respects (physical realism, accuracy, and computing time).Comment: accepted in A&A, 7 pages, 7 figures, web link for the F90 code and
on-line calculations :
http://www.obs.u-bordeaux1.fr/radio/JMHure/intro2single.ph
A Holistic Assessment of the Reliability of Machine Learning Systems
As machine learning (ML) systems increasingly permeate high-stakes settings
such as healthcare, transportation, military, and national security, concerns
regarding their reliability have emerged. Despite notable progress, the
performance of these systems can significantly diminish due to adversarial
attacks or environmental changes, leading to overconfident predictions,
failures to detect input faults, and an inability to generalize in unexpected
scenarios. This paper proposes a holistic assessment methodology for the
reliability of ML systems. Our framework evaluates five key properties:
in-distribution accuracy, distribution-shift robustness, adversarial
robustness, calibration, and out-of-distribution detection. A reliability score
is also introduced and used to assess the overall system reliability. To
provide insights into the performance of different algorithmic approaches, we
identify and categorize state-of-the-art techniques, then evaluate a selection
on real-world tasks using our proposed reliability metrics and reliability
score. Our analysis of over 500 models reveals that designing for one metric
does not necessarily constrain others but certain algorithmic techniques can
improve reliability across multiple metrics simultaneously. This study
contributes to a more comprehensive understanding of ML reliability and
provides a roadmap for future research and development
THE ROLES AND MECHANISMS OF LINEAR AND ANGULAR IMPULSE GENERATION FOR BOTH LEGS IN BASEBALL PITCHING: A WHOLE-BODY PERSPECTIVE
This study compared the role of each leg in generating linear and angular impulse during fastball pitches performed by professional pitchers (n=4). Participants were asked to pitch from an instrumented mound and 6-11 successful fastball pitches were used for the analysis. The results indicate that back leg generated forward linear impulse and the front leg generated backward linear impulse for all pitchers. Back leg ground reaction forces generated significantly larger angular impulse about a horizontal axis passing through the body center of mass from the mound to first base than the front leg in three of four pitchers. Additionally, the mechanisms of moment generation about the axis by each leg differed
A 3D APPROACH TO BASEBALL PITCHING KINEMATIC SEQUENCE
A proximal-to-distal sequence (PDS) in baseball pitching is theorized to be more efficient and can reduce upper limb joint loads. However, studies investigating PDS using timing of peak segment angular velocity magnitude did not identify the use of “full” PDS from pelvis to hand. This study investigated PDS by comparing the timings of peak angular velocities about each global axis for the pelvis, trunk, upper arm, forearm, and hand during fastballs thrown by professional pitchers (n=4). We found that pitchers demonstrated full PDS about the global left axis (from pitching mound to first base) in 67-100% of their trials, depending on the pitcher. No pitcher demonstrated full PDS about the other two global axes. Similar to prior studies, we also did not observe full PDS when using angular velocity magnitude. This could be explained by differences in body segment rotation sequences between global axes. We also preliminarily uncovered impacts of filtering on the kinematic sequence detected. Analyzing 3D angular velocities with carefully selected filters may advance our understanding of the dynamics of pitching
Trends in Shoulder Stabilization Techniques Used in the United States Based on a Large Private-Payer Database
Background:
Arthroscopic stabilization is the most broadly used surgical procedure in the United States for management of recurrent shoulder instability. Latarjet coracoid transfer has been considered a salvage surgical procedure for failed arthroscopic repairs or cases of significant glenoid bone loss; however, with recent literature suggesting reduced risk of recurrent instability with Latarjet, several surgeons have advocated its broader utilization as a primary operation for treatment of shoulder instability.
Purpose:
To determine trends in shoulder stabilization techniques used in the United States.
Study Design:
Cross-sectional study.
Methods:
A retrospective analysis of a publicly available national insurance database was performed to identify shoulder stabilization procedures performed over 9 years (2007-2015). The following Current Procedural Terminology codes were searched: 29806 (arthroscopic stabilization), 23455 (open capsulolabral repair), 23466 (open capsular shift), 23462 (Latarjet coracoid transfer), and 23460 (open anterior capsulorrhaphy with other bone block augmentation). Outcomes of interest included (1) trends in the use of each technique throughout the study interval, (2) age and sex distributions of patients undergoing each technique, and (3) regional predilections for the use of each technique.
Results:
Arthroscopic stabilization was the most broadly used shoulder stabilization procedure in the database (87%), followed by open Bankart (7%), Latarjet (3.2%), open capsular shift (2.6%), and alternative bone block procedure (0.8%). Throughout the study period, the incidence of arthroscopic stabilization and Latarjet increased (8% and 15% per year, respectively); the incidence of open capsular shift remained relatively constant; and the incidence of open Bankart decreased (9% per year). Arthroscopic stabilization, open Bankart, and Latarjet each had similar sex-based distributions (roughly 70% male), while open capsular shift and alternative bone block were relatively more common in females (54% and 50% male, respectively). The incidence of arthroscopic stabilization and Latarjet were greatest in the South and lowest in the Northeast.
Conclusion:
Arthroscopic stabilization remains the most commonly utilized stabilization technique in the United States. The use of the Latarjet procedure is steadily increasing and now rivals open Bankart stabilization among the most commonly used open stabilization techniques
How Comprehensive and Efficient Are Patient-Reported Outcomes for Rotator Cuff Tears?
BACKGROUND: Increasing emphasis is placed on patient-reported outcomes (PROs) after common orthopaedic procedures as a measure of quality. When considering PRO utilization in patients with rotator cuff tears, several different PROs exist with varying levels of accuracy and utilization.
HYPOTHESIS/PURPOSE: Understanding which disease-specific PRO may be most efficiently administered in patients after rotator cuff repair may assist in promoting increased patient and physician adoption of these useful scores. Using a novel assessment criterion, this study assessed all commonly used rotator cuff PROs. We hypothesize that surveys with fewer numbers of questions may remain comparable (with regard to comprehensiveness) to longer surveys.
STUDY DESIGN: Systematic review.
METHODS: Commonly utilized rotator cuff PROs were analyzed with regard to number of survey components, comprehensiveness, and efficiency. Comprehensiveness (maximum score, 11) was scored as the total number of pain (at rest/baseline, night/sleep, activities of daily living [ADLs], sport, and work) and functional (strength, motion/stiffness, and ability to perform ADLs, sport, and work) metrics included, along with inclusion of quality of life/satisfaction metrics. Efficiency was calculated as comprehensiveness divided by the number of survey components.
RESULTS: Sixteen different PROs were studied. Number of components ranged from 5 (University of California at Los Angeles score [UCLA]) to 36 (Short Form-36 [SF-36], Japanese Orthopaedic Association score [JOA]). The Quality of Life Outcome Measure for Rotator Cuff Disease (RC-QoL) included all 5 pain components, while 7 PROs contained all 5 functional components. Ten PROs included a quality of life/satisfaction component. The most comprehensive scores were the RC-QoL (score, 11) and Penn (score, 10), and the least comprehensive score was the Marx (score, 3). The most efficient PROs were the UCLA, the Quick Disabilities of the Arm, Shoulder, and Hand score (QuickDASH), and Constant scores. The least efficient scores were the JOA and SF-36 scores.
CONCLUSION: Many commonly utilized PROs for rotator cuff tears are lacking in comprehensiveness and efficiency. Continued critical assessment of PRO quality may help practitioners identify the most comprehensive and efficient PRO to incorporate into daily clinical practice
- …