61 research outputs found

    The preservation of the Cape flora : status, causes of rarity, ideals and priorities

    Get PDF
    Includes bibliographies.The Cape Floristic Region (CFR), covering 90 000 km2, comprises one of the world's six floral kingdoms. With 8600 species, of which 68 per cent are endemic, it ranks amongst the richest of temperate and tropical floras. Although 19 per cent of the CFR occurs in nature reserves, by far the majority of the preserved area comprises Mountain Fynbos. Only 0.5 and 3 per cent of the original extent of Renoster Shrub/and Lowland Fynbos is preserved, respectively. In this study Fynbos vegetation is identified as the richest habitat for Red Data Book (RDB) plant, freshwater fish, amphibian, butterfly, and reptile species in southern Africa. The greater Cape Town metropolitan area is identified as containing by far the highest richness of RDB plant, butterfly, reptile and amphibian species in the CFR Thus, this area ranks globally as one of the most urgent conservation priorities. The study also illustrates that previously used methods for evaluating priority conservation areas have under-rated species-poor areas containing a high proportion of RDB species. By collecting for species richness, a far more realistic picture of threatened areas can be obtained from RDB taxa. This study predicts, using a priori hypotheses based on ecological traits, and finds, that seed dispersal and regeneration strategies are most strongly correlated with rarity, most specifically with distributional area. Using distributional data for the Proteaceae, this study estimates that 95 per cent of all vascular plant species in Fynbos can be preserved in 16 per cent of the area. It also identifies the sites that require preservation if the maximum protection of floral diversity is to be realized. Two null models for evaluating the efficiency of a spatial configuration of reserves are proposed. Utilizing an iterating selection procedure, this study explores various algorithms, based on species richness and rarity, to construct ideal reserve configurations. This study provides the first empirical confirmation that the ideal approach to designing a reserve configuration is to identify areas of high endemism and richness in distinctive vegetation types within particular biogeographical regions. Thus, this study pioneers the use of RDB data to identify priority conservation regions, provides one of the first assessments of the causes of rarity in plants and establishes useful null models and algorithms for the identification and testing of ideal reserve locations in the design of integrated reserve networks. Not only does this study contribute towards theoretical reserve selection procedures, but it provides one of the most advanced frameworks for the preservation of a top conservation priority in the world, the CFR

    The Restoration of Erica verticillata

    Get PDF
    The Threatened Species Programme at the South African National Biodiversity Institute, Kirstenbosch National Botanical Garden, is integrated to include both ex situ and in situ conservation activities. Plant conservation is driven by South Africa’s Strategy for Plant Conservation which was developed in response to the Global Strategy for Plant Conservation. This case study examines the conservation of Erica verticillata (whorl heath), a flagship for threatened species at Kirstenbosch, and documents the integration of ex situ with in situ conservation at three areas on the Cape Flats. The whorl heath was thought to be extinct by 1950. Horticulturists have since rediscovered eight clones in botanic gardens worldwide, the Heather Society and commercial growers. Ex situ conservation in botanic garden collections and the Millennium Seed Bank has since allowed in situ conservation in the critically endangered Cape Flats Sand Fynbos vegetation type. The process of restoring the whorl heath presented many challenges. Initially attempts were hampered by limited available knowledge on suitable niche habitats. Pioneering work carried out at Rondevlei Nature Reserve identified the suitable habitat and this was applied in subsequent in situ work at Kenilworth Racecourse Conservation Area and at Tokai Park – the only natural areas remaining in or near this species’ historical distribution range. Successful re-establishment of this species depends upon its capacity to recruit after fire, which is an essential ecological process in the fynbos. Many clones have been in cultivation for a long time and are poor seed producers: seed production was first recorded at Rondevlei only after additional clones were planted together. Only one population (Rondevlei) to date has seen a fire and thus has recruited seedlings; however these are competing with vigorous companion plants. The study continues and is currently exploring the role of herbivory in the restoration process. The key lesson learnt to date is the need to include sustainable management of the entire ecosystem in the restoration process and not limit it to single species. Success in restoring a species depends upon a healthy stand of the vegetation type in place, along with pollinators and other key fauna and other natural ecosystem processes. It is recommended that successful re- establishment of a species in fynbos requires the reintroduced population to survive three fire cycles

    Explaining species distribution patterns through hierarchical modeling

    Get PDF
    Understanding spatial patterns of species diversity and the distri- butions of individual species is a consuming problem in biogeography and con- servation. The Cape Floristic Region (CFR) of South Africa is a global hotspot of diversity and endemism, and the Protea Atlas Project, with some 60,000 site records across the region, provides an extraordinarily rich data set to analyze bio- diversity patterns. Analysis for the region is developed at the spatial scale of one minute grid-cells ( 37; 000 cells total for the region). We report on results for 40 species of a owering plant family Proteaceae (of about 330 in the CFR) for a de ned subregion. Using a Bayesian framework, we develop a two stage, spatially explicit, hierar- chical logistic regression. Stage one models the suitability or potential presence for each species at each cell, given species attributes along with grid cell (site-level) climate, precipitation, topography and geology data using species-level coe cients, and a spatial random e ect. The second level of the hierarchy models, for each species, observed presence=absence at a sampling site through a conditional speci- cation of the probability of presence at an arbitrary location in the grid cell given that the location is suitable. Because the atlas data are not evenly distributed across the landscape, grid cells contain variable numbers of sampling localities. Indeed, some grid cells are entirely unsampled; others have been transformed by human intervention (agriculture, urbanization) such that none of the species are there though some may have the potential to be present in the absence of distur- bance. Thus the modeling takes the sampling intensity at each site into account by assuming that the total number of times that a particular species was observed within a site follows a binomial distribution.In fact, a range of models can be examined incorporating di erent rst and second stage speci cations. This necessitates model comparison in a misaligned multilevel setting. All models are tted using MCMC methods. A best" model is selected. Parameter summaries o er considerable insight. In addition, results are mapped as the model-estimated potential presence for each species across the domain. This probability surface provides an alternative to customary empiri- cal \range of occupancy" displays. Summing yields the predicted species richness over the region. Summaries of the posterior for each environmental coe cient show which variables are most important in explaining species presence. Other biodi- versity measures emerge as model unknowns. A considerable range of inference is available. We illustrate with only a portion of the analyses we have conducted, noting that these initial results describe biogeographical patterns over the modeled region remarkably well

    Guidelines for restoring Lowland Sand Fynbos ecosystems

    Get PDF
    CITATION: Holmes, P.M., et al. 2022. Guidelines for restoring Lowland Sand Fynbos ecosystems. Stellenbosch: Stellenbosch Univesity, Department of Conservation Ecology and Entomology.The original publication is available at http://biodiversityadvisor.sanbi.org/planning-and-assessment/ecological-restoration/Lowland Sand Fynbos ecosystems are among the most threatened terrestrial systems in South Africa. Of the ten Sand Fynbos veld types, seven are Critically Endangered or Endangered according to the IUCN Red List of Ecosystems. They are all either poorly protected, or not protected at all in the conservation network. Sand Fynbos ecosystems harbour unique biodiversity, but owing to their lowland locations experience extensive losses to other land uses. Some natural pockets remain scattered within agricultural or urban developments. They are, however degraded due to invasive alien plants, inappropriate fire regimes or pollution and are an urgent priority to restore. National biodiversity targets aim for a minimum proportion of an ecosystem type to be retained in a natural or near-natural state. The minimum target for Sand Fynbos ecosystems is mostly 30% of the original extent – a target no longer attainable for several of these ecosystems, such as Cape Flats Sand Fynbos. For many of these precious systems, this means a necessary focus on their restoration. The purpose of these guidelines is to assist managers and landowners of degraded Sand Fynbos vegetation to restore biodiversity and contribute to the conservation of these threatened ecosystems. The guidelines outline appropriate methods to restore degraded Sand Fynbos ecosystems, based on the latest research and field trial outcomes.Hans Hoheisen Charitable TrustBiodiversity Management Branch, City of Cape TownSANBI - South African National Biodiversity InstituteHans Hoheisen Charitable TrustPublishers versio

    Synergies between the key biodiversity area and systematic conservation planning approaches

    Get PDF
    Systematic conservation planning and Key Biodiversity Areas (KBAs) are the two most widely used approaches for identifying important sites for biodiversity. However, there is limited advice for conservation policy makers and practitioners on when and how they should be combined. Here we provide such guidance, using insights from the recently developed Global Standard for the Identification of KBAs and the language of decision science to review and clarify their similarities and differences. We argue the two approaches are broadly similar, with both setting transparent environmental objectives and specifying actions. There is however greater contrast in the data used and actions involved, as the KBA approach uses biodiversity data alone and identifies sites for monitoring and vigilance actions at a minimum, whereas systematic conservation planning combines biodiversity and implementation‐relevant data to guide management actions. This difference means there is much scope for combining approaches, so conservation planners should use KBA data in their analyses, setting context‐specific targets for each KBA type, and planners and donors should use systematic conservation planning techniques when prioritizing between KBAs for management action. In doing so, they will benefit conservation policy, practice and research by building on the collaborations formed through the KBA Standard's development

    Match-Play and Performance Test Responses of Soccer Goalkeepers: A Review of Current Literature.

    Get PDF
    Goalkeepers are typically the last defensive line for soccer teams aiming to minimise goals being conceded, with match rules permitting ball handling within a specific area. Goalkeepers are also involved in initiating some offensive plays, and typically remain in close proximity to the goal line while covering ~ 50% of the match distances of outfield players; hence, the competitive and training demands of goalkeepers are unique to their specialised position. Indeed, isolated performance tests differentiate goalkeepers from outfield players in multiple variables. With a view to informing future research, this review summarised currently available literature reporting goalkeeper responses to: (1) match play (movement and skilled/technical demands) and (2) isolated performance assessments (strength, power, speed, aerobic capacity, joint range of motion). Literature searching and screening processes yielded 26 eligible records and highlighted that goalkeepers covered ~ 4-6 km on match day whilst spending ~ 98% of time at low-movement intensities. The most decisive moments are the 2-10 saves·match-1 performed, which often involve explosive actions (e.g. dives, jumps). Whilst no between-half performance decrements have been observed in professional goalkeepers, possible transient changes over shorter match epochs remain unclear. Isolated performance tests confirm divergent profiles between goalkeepers and outfield players (i.e. superior jump performance, reduced [Formula: see text]2max values, slower sprint times), and the training of soccer goalkeepers is typically completed separately from outfield positions with a focus primarily on technical or explosive drills performed within confined spaces. Additional work is needed to examine the physiological responses to goalkeeper-specific training and match activities to determine the efficacy of current preparatory strategies

    Recommendations for effective documentation in regional anesthesia: an expert panel Delphi consensus project

    Get PDF
    Background and objectives: Documentation is important for quality improvement, education, and research. There is currently a lack of recommendations regarding key aspects of documentation in regional anesthesia. The aim of this study was to establish recommendations for documentation in regional anesthesia. Methods: Following the formation of the executive committee and a directed literature review, a long list of potential documentation components was created. A modified Delphi process was then employed to achieve consensus amongst a group of international experts in regional anesthesia. This consisted of 2 rounds of anonymous electronic voting and a final virtual round table discussion with live polling on items not yet excluded or accepted from previous rounds. Progression or exclusion of potential components through the rounds was based on the achievement of strong consensus. Strong consensus was defined as ≄75% agreement and weak consensus as 50%-74% agreement. Results: Seventy-seven collaborators participated in both rounds 1 and 2, while 50 collaborators took part in round 3. In total, experts voted on 83 items and achieved a strong consensus on 51 items, weak consensus on 3 and rejected 29. Conclusion: By means of a modified Delphi process, we have established expert consensus on documentation in regional anesthesia

    Invasive potential and management of naturalised ornamentals across an urban environmental gradient with a focus on Centranthus ruber

    Get PDF
    CITATION: Holmes, P. M., Rebelo, A. G. & Irlich, U. M. 2018. Invasive potential and management of naturalised ornamentals across an urban environmental gradient with a focus on Centranthus ruber. Bothalia - African Biodiversity and Conservation, 48(1):a2345, doi:10.4102/abc.v48i1.2345.The original publication is available at https://abcjournal.orgBackground: Predicting which alien species may become invasive is important in prioritising scarce resources for management. Objectives: Sixteen naturalised ornamentals in Cape Town were assessed for invasion potential in relation to a mechanistic framework. The recently spreading species, Centranthus ruber (L.) DC., was studied in detail following management actions and vegetation fires. Method: The mechanistic framework was developed using nine features most likely to promote invasiveness. Species were assessed from their known characteristics, local usage and distribution records, including citizen science surveys. Surveys were conducted for C. ruber to assess its ability to survive and spread post-fire. Control efficacy for Centranthus ruber was assessed in plots at two sites. Results: Nine species with more than 25 naturalisation records had a median of seven features that promote invasion compared to five features in the less recorded group of seven species. Centranthus ruber was widespread in modified urban habitats and persisted in natural habitats following vegetation fires and is a high priority for control. Post-fire mechanical and chemical control of C. ruber significantly reduced its density and cover, but did not eliminate it. Conclusion: Naturalised ornamentals can move rapidly from latent to invasive phases; therefore, monitoring should start during the latent phase to detect sudden change. In firedriven ecosystems it is essential to have good pre-fire baseline data. More residents should be encouraged to become spotters through citizen science programmes and to report new naturalised ornamentals. It is important to act early in the invasion process and to allocate sufficient resources, if a newly invasive species is to be contained.The original publication is available at https://abcjournal.org/index.php/abc/article/view/2345Publisher's versio

    Effectiveness of land classes as surrogates for species in conservation planning for the Cape Floristic Region

    No full text
    Land classes are often used in conservation planning as surrogates for species. The relationship between these surrogates and the distribution of species is usually assumed but rarely tested. Using broad habitat units (BHUs) to represent biodiversity pattern in the Cape Floristic Region, together with point locality data for species (proteas and selected vertebrates), we calculated the effectiveness of BHUs as surrogates for species. Our planning units were grid cells of about 40 km(2), together with boundaries of existing reserves. After assigning conservation targets to BHUs, we derived minimum sets of planning units to meet all targets and calculated irreplaceability values for all units (irreplaceability measures the likelihood of a unit being required to achieve targets). Results showed that BHUs were good surrogates for the majority of protea species, but were not good surrogates for vertebrate species or for a small subset of protea species. These species shared the following characteristics: rarity, limited ranges, Red Data Book status, specialised habitats not defined by BHUs, and distributions driven by historical rather than contemporary ecological factors. We show that targeting land classes and species simultaneously is a viable option and requires only 0.1-0.8% more land (depending on species targets) than targeting land classes alone. We conclude by recommending two different strategies for combining land class and species data in conservation planning, depending on data availability.. (C) 2003 Elsevier Science Ltd. All rights reserved
    • 

    corecore