34 research outputs found

    A first look at dust lifting and dust storms near the south pole of Mars with a mesoscale model

    Get PDF
    Surface wind stresses and dust lifting in the south polar region of Mars are examined with a three-dimensional numerical model. The focus of this study is the middle to late southern spring period when cap-edge dust lifting events are observed. Mesoscale model simulations of high southern latitudes are conducted at three dates within this season (L_s = 225°, 255°, and 310°). Assuming that dust injection is related to the saltation of sand-sized grains or aggregates, the Mars MM5 mesoscale model predicts surface wind stresses of sufficient strength to initiate movement of sand-sized particles (∼100 μm), and hence dust lifting, during all three periods. The availability of dust and/or sand-sized particles is not addressed within this study. Instead, the degree to which the existence of sufficiently strong winds limit dust injection is examined. By eliminating forcing elements from the model, the important dynamical modes generating high wind stresses are isolated. The direct cap-edge thermal contrast (and topographic slopes in some locations) provides the primary drive for high surface wind stresses at the cap edge, while sublimation flow is not found to be particularly important, at these three dates. Simulations in which dust is injected into the lowest model layer when wind stresses exceed a threshold show similar patterns of atmospheric dust to those seen in recent observations. Comparison between these simulations and those without active dust injection shows no signs of consistent positive or negative feedback due to dust clouds on the surface wind stress fields during the late spring season examined here

    Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars

    Get PDF
    We investigate the triggering mechanism of a cross-equatorial dust storm observed by Mars Global Surveyor in 1999. This storm, which had a significant impact on global mean temperatures, was seen in visible and infrared data to commence with the transport of linear dust fronts from the northern high latitudes into the southern tropics. However, other similar transport events observed in northern fall and winter did not lead to large dust storms. Based on off-line Lagrangian particle transport analysis using a high resolution Mars general circulation model, we propose a simple explanation for the diurnal, seasonal and interannual variability of this type of frontal activity, and of the resulting dust storms, that highlights the cooperative interaction between northern hemisphere fronts associated with low pressure cyclones and tidally-modified return branch of the Hadley circulation

    Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars

    Get PDF
    We investigate the triggering mechanism of a cross-equatorial dust storm observed by Mars Global Surveyor in 1999. This storm, which had a significant impact on global mean temperatures, was seen in visible and infrared data to commence with the transport of linear dust fronts from the northern high latitudes into the southern tropics. However, other similar transport events observed in northern fall and winter did not lead to large dust storms. Based on off-line Lagrangian particle transport analysis using a high resolution Mars general circulation model, we propose a simple explanation for the diurnal, seasonal and interannual variability of this type of frontal activity, and of the resulting dust storms, that highlights the cooperative interaction between northern hemisphere fronts associated with low pressure cyclones and tidally-modified return branch of the Hadley circulation

    Extensive MRO CRISM Observations of 1.27 micron O2 Airglow in Mars Polar Night and Their Comparison to MRO MCS Temperature Profiles and LMD GCM Simulations

    Get PDF
    The Martian polar night distribution of 1.27 micron (0-0) band emission from O2 singlet delta [O2(1Delta(sub g))] is determined from an extensive set of Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectral Mapping (CRISM) limb scans observed over a wide range of Mars seasons, high latitudes, local times, and longitudes between 2009 and 2011. This polar nightglow reflects meridional transport and winter polar descent of atomic oxygen produced from CO2 photodissociation. A distinct peak in 1.27 micron nightglow appears prominently over 70-90NS latitudes at 40-60 km altitudes, as retrieved for over 100 vertical profiles of O2(1Delta(sub g)) 1.27 micron volume emission rates (VER). We also present the first detection of much (x80+/-20) weaker 1.58 micron (0-1) band emission from Mars O2(1Delta(sub g)). Co-located polar night CRISM O2(1Delta(sub g)) and Mars Climate Sounder (MCS) (McCleese et al., 2008) temperature profiles are compared to the same profiles as simulated by the Laboratoire de Mtorologie Dynamique (LMD) general circulation/photochemical model (e.g., Lefvre et al., 2004). Both standard and interactive aerosol LMD simulations (Madeleine et al., 2011a) underproduce CRISM O2(1Delta(sub g)) total emission rates by 40%, due to inadequate transport of atomic oxygen to the winter polar emission regions. Incorporation of interactive cloud radiative forcing on the global circulation leads to distinct but insufficient improvements in modeled polar O2(1Delta(sub g)) and temperatures. The observed and modeled anti-correlations between temperatures and 1.27 mm band VER reflect the temperature dependence of the rate coefficient for O2(1Delta(sub g)) formation, as provided in Roble (1995)

    An Investigation of Dust Storms Observed with the Mars Color Imager

    No full text
    Daily global imaging by the Mars Color Imager (MARCI) continues the record of the Mars Orbiter Camera (MOC) and has allowed creation of a long-duration record of Martian dust storms. We observe dust storms over the first two Mars years of the MARCI record, including tracking individual storms over multiple sols, as well as tracking the growth and recession of the seasonal polar caps. Using the combined 6 Mars year record of textured dust storms (storms with visible textures on the observed dust cloud tops), we study the relationship between textured dust storm activity and meteorology (as simulated by the MarsWRF general circulation model) and surface properties. We find that textured dust storms preferentially occur in places and seasons with above average surface wind stress. Textured dust storm occurrence also has a modest linear anti-correlation with surface albedo (0.43) and topography (0.40). Lastly, we perform an empirical orthogonal function (EOF) analysis on the distribution of occurrence of textured dust storms and find that over 50 of the variance in textured dust storm activity can be explained by two EOF modes. We associate the first EOF mode with cap-edge storms just before Ls = 180deg and the second EOF mode with flushing dust storms that occur from Ls = 180-210deg and again near Ls = 320deg

    Thermal tides on Pluto

    No full text
    International audienceStellar occultations have shown that vertical profiles of density fluctuations in the atmosphere of Pluto typically show wave-like structure with an amplitude of a few percent and vertical wavelengths of a few kilometers. Here we calculate the tidal response of Pluto's atmosphere to solar-induced sublimation "breathing" from N 2 frost patches. Solutions show global-scale wave-like density structure capable of explaining the observations. The atmospheric response is a combination of eastward and westward migrating tides, together with a zonally symmetric mode. Calculated vertical wavelengths and amplitudes are similar to observations

    Penitentes as the Origin of the Bladed Terrain of Tartarus Dorsa on Pluto

    No full text
    Penitentes are snow and ice features formed by erosion that, on Earth, are characterized by bowl-shaped depressions several tens of centimetres across, whose edges grade into spires up to several metres tall. Penitentes have been suggested as an explanation for anomalous radar data on Europa, but until now no penitentes have been identified conclusively on planetary bodies other than Earth. Regular ridges with spacings of 3,000 to 5,000 metres and depths of about 500 metres with morphologies that resemble penitentes have been observed by the New Horizons spacecraft in the Tartarus Dorsa region of Pluto (220 deg -250 deg E, 0 deg -20 deg N). Here we report simulations, based upon a recent model representing conditions on Pluto in which deepening penitentes reproduce both the tri-modal (north-south, east-west and northeast-southwest) orientation and the spacing of the ridges of this bladed terrain. At present, these penitentes deepen by approximately one centimetre per orbital cycle and grow only during periods of relatively high atmospheric pressure, suggesting a formation timescale of several tens of millions of years, consistent with crater ages. This timescale implies that the penitentes formed from initial topographic variations of no more than a few tens of metres, consistent with Plutos youngest terrains

    Martian Weather Correlation Length Scales

    No full text
    Spring and fall equinox Viking infrared thermal mapper 15-μm channel atmospheric brightness temperature (T15) observations are used to estimate the weather correlation length scale of Mars in the pressure range 0.5–1 mbar. The results provide a better understanding of martian atmospheric dynamics, a benchmark for validating martian general circulation models (GCMs), a guide to the optimal placement of a network of landers, and information for use in data assimilation efforts for orbiters and landers. Observations of atmospheric temperature are used to compute an atmospheric mean state as a function of time-of-day, latitude, longitude, and altitude, which is then subtracted from the observations to yield weather temperature residuals. These residuals are correlated with each other to determine (1) the weather temperature correlation length scale (∼1000 km) as a function of latitude and (2) the weather temperature variance (∼4 K^2 global average for L_S∼ 0°, ∼3 K^2 for L_S ∼ 180°). Good general agreement is found in comparing the length scales to the Rossby radius of deformation and to inferences made from other data sets. The weather temperature variance results are also compared with GCM results, yielding satisfactory agreement, with some differences in the magnitudes of the variances

    Atmospheric modeling of Mars methane surface releases

    No full text
    We utilize the MarsWRF general circulation model (GCM) to address the behavior of gas plumes in the Martian atmosphere, with the specific goal of characterizing the source of the recently identified methane detection in the Martian atmosphere. These observations have been interpreted as the release of methane from localized surface sources with spatial and temporal variabilities. Due to the limited temporal coverage of ground-based observations, we use a GCM to simulate the development of passive atmospheric plumes over relevant timescales. The observations can be reproduced best if the release occurred just before the time of observation—no more than 1–2 sols earlier—and if this release were nearly instantaneous rather than a slow, steady emission. Furthermore, it requires a source region spanning a broad latitudinal range rather than a point emission. While the accuracy of our conclusions about this specific methane release scenario is limited by the uncertainties inherent in GCM simulations of the Martian atmosphere, our findings regarding generalized plume behavior are robust, and illustrate the potential power of numerical modeling for constraining plume source conditions
    corecore