5,562 research outputs found

    Titanium Nitride Films for Ultrasensitive Microresonator Detectors

    Full text link
    Titanium nitride (TiNx) films are ideal for use in superconducting microresonator detectors because: a) the critical temperature varies with composition (0 < Tc < 5 K); b) the normal-state resistivity is large, \rho_n ~ 100 μ\muOhm cm, facilitating efficient photon absorption and providing a large kinetic inductance and detector responsivity; and c) TiN films are very hard and mechanically robust. Resonators using reactively sputtered TiN films show remarkably low loss (Q_i > 10^7) and have noise properties similar to resonators made using other materials, while the quasiparticle lifetimes are reasonably long, 10-200 μ\mus. TiN microresonators should therefore reach sensitivities well below 10^-19 WHz^(-1/2).Comment: to be published in AP

    The Aesthetic Dimensions of U.S. and South Korean Responses to Web Home Pages: A Cross-Cultural Comparison

    Get PDF
    Culturally influenced preferences in website aesthetics is a topic often neglected by scholars in human-computer interaction. Kim, Lee, and Choi (2003) identified aesthetic design factors of web home pages that elicited particular responses in South Korean web users based on 13 secondary emotional dimensions. This study extends Kim et al.'s work to U.S. participants, comparing the original South Korean findings with U.S. findings. Results show that U.S. participants reliably applied translations of the emotional adjectives used in the South Korean study to the home pages. However, factor analysis revealed that the aesthetic perceptions of U.S. and South Korean participants formed different aesthetic dimensions composed of different sets of emotional adjectives, suggesting that U.S. and South Korean people perceive the aesthetics of home pages differently. These results indicate that website aesthetics can vary significantly between cultures

    Addition of rituximab to CHOP-like chemotherapy in first line treatment of primary mediastinal B-cell lymphoma

    Get PDF
    Background: The addition of rituximab (R) to CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) -like therapy has improved survival in primary mediastinal B-cell lymphoma (PMBCL) patients. However, these results were obtained in young low risk patients and a reevaluation in an unselected patient cohort is warranted. Methods: In this study, we analyzed 80 PMBCL patients treated with a CHOP-based regimen with and without rituximab. Results: In the non-rituximab cohort 10-year progression free survival (PFS) was 67% and 10-year overall survival (OS) was 72% versus a PFS of 95% and a OS of 92% in the rituximab group, PFS P = 0.001, OS P = 0.023. A subgroup PFS analysis by international prognostic index (IPI) risk revealed that all risk groups benefit from addition of rituximab to induction chemotherapy. In addition, OS probability was higher in the group of non-low risk patients who were treated with rituximab compared to those patients who did not receive rituximab (P = 0.035). In multivariate analysis, only addition of rituximab to induction chemotherapy and reaching complete remission (CR) after first line therapy had a beneficial effect on both PFS and OS, whereas IPI, age, upfront high dose (HD) chemotherapy/autologous blood stem cell transplantation (ABSCT) and rituximab maintenance had no impact on survival. Conclusions: Our data demonstrate a survival benefit in unselected PMBCL patients treated with CHOP-like induction regimen and additional rituximab independently of the IPI risk score

    Study of the Potts Model on the Honeycomb and Triangular Lattices: Low-Temperature Series and Partition Function Zeros

    Full text link
    We present and analyze low-temperature series and complex-temperature partition function zeros for the qq-state Potts model with q=4q=4 on the honeycomb lattice and q=3,4q=3,4 on the triangular lattice. A discussion is given as to how the locations of the singularities obtained from the series analysis correlate with the complex-temperature phase boundary. Extending our earlier work, we include a similar discussion for the Potts model with q=3q=3 on the honeycomb lattice and with q=3,4q=3,4 on the kagom\'e lattice.Comment: 33 pages, Latex, 9 encapsulated postscript figures, J. Phys. A, in pres

    An integrated general practice and pharmacy-based intervention to promote the use of appropriate preventive medications among individuals at high cardiovascular disease risk: protocol for a cluster randomized controlled trial

    Get PDF
    Background: Cardiovascular diseases (CVD) are responsible for significant morbidity, premature mortality, and economic burden. Despite established evidence that supports the use of preventive medications among patients at high CVD risk, treatment gaps remain. Building on prior evidence and a theoretical framework, a complex intervention has been designed to address these gaps among high-risk, under-treated patients in the Australian primary care setting. This intervention comprises a general practice quality improvement tool incorporating clinical decision support and audit/feedback capabilities; availability of a range of CVD polypills (fixed-dose combinations of two blood pressure lowering agents, a statin ± aspirin) for prescription when appropriate; and access to a pharmacy-based program to support long-term medication adherence and lifestyle modification. Methods: Following a systematic development process, the intervention will be evaluated in a pragmatic cluster randomized controlled trial including 70 general practices for a median period of 18 months. The 35 general practices in the intervention group will work with a nominated partner pharmacy, whereas those in the control group will provide usual care without access to the intervention tools. The primary outcome is the proportion of patients at high CVD risk who were inadequately treated at baseline who achieve target blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) levels at the study end. The outcomes will be analyzed using data from electronic medical records, utilizing a validated extraction tool. Detailed process and economic evaluations will also be performed. Discussion: The study intends to establish evidence about an intervention that combines technological innovation with team collaboration between patients, pharmacists, and general practitioners (GPs) for CVD prevention. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN1261600023342

    Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

    Full text link
    The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.Comment: 36 pages, 20 figure

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage

    Get PDF
    To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2Q150/Q150, 18-month HdhQ92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trial

    The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    Get PDF
    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.Comment: Preprint to be submitted to The European Physical Journal
    corecore