87 research outputs found

    Hedgehog Pathway Activation Alters Ciliary Signaling in Primary Hypothalamic Cultures

    Get PDF
    Primary cilia dysfunction has been associated with hyperphagia and obesity in both ciliopathy patients and mouse models of cilia perturbation. Neurons throughout the brain possess these solitary cellular appendages, including in the feeding centers of the hypothalamus. Several cell biology questions associated with primary neuronal cilia signaling are challenging to address in vivo. Here we utilize primary hypothalamic neuronal cultures to study ciliary signaling in relevant cell types. Importantly, these cultures contain neuronal populations critical for appetite and satiety such as pro-opiomelanocortin (POMC) and agouti related peptide (AgRP) expressing neurons and are thus useful for studying signaling involved in feeding behavior. Correspondingly, these cultured neurons also display electrophysiological activity and respond to both local and peripheral signals that act on the hypothalamus to influence feeding behaviors, such as leptin and melanin concentrating hormone (MCH). Interestingly, we found that cilia mediated hedgehog signaling, generally associated with developmental processes, can influence ciliary GPCR signaling (Mchr1) in terminally differentiated neurons. Specifically, pharmacological activation of the hedgehog-signaling pathway using the smoothened agonist, SAG, attenuated the ability of neurons to respond to ligands (MCH) of ciliary GPCRs. Understanding how the hedgehog pathway influences cilia GPCR signaling in terminally differentiated neurons could reveal the molecular mechanisms associated with clinical features of ciliopathies, such as hyperphagia-associated obesity

    A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve

    Full text link
    Abstract Background Identifying functional non-coding variation is critical for defining the genetic contributions to human disease. While single-nucleotide polymorphisms (SNPs) within cis-acting transcriptional regulatory elements have been implicated in disease pathogenesis, not all cell types have been assessed and functional validations have been limited. In particular, the cells of the peripheral nervous system have been excluded from genome-wide efforts to link non-coding SNPs to altered gene function. Addressing this gap is essential for defining the genetic architecture of diseases that affect the peripheral nerve. We developed a computational pipeline to identify SNPs that affect regulatory function (rSNPs) and evaluated our predictions on a set of 144 regions in Schwann cells, motor neurons, and muscle cells. Results We identified 28 regions that display regulatory activity in at least one cell type and 13 SNPs that affect regulatory function. We then tailored our pipeline to one peripheral nerve cell type by incorporating SOX10 ChIP-Seq data; SOX10 is essential for Schwann cells. We prioritized 22 putative SOX10 response elements harboring a SNP and rapidly validated two rSNPs. We then selected one of these elements for further characterization to assess the biological relevance of our approach. Deletion of the element from the genome of cultured Schwann cells—followed by differential gene expression studies—revealed Tubb2b as a candidate target gene. Studying the enhancer in developing mouse embryos revealed activity in SOX10-positive cells including the dorsal root ganglia and melanoblasts. Conclusions Our efforts provide insight into the utility of employing strict conservation for rSNP discovery. This strategy, combined with functional analyses, can yield candidate target genes. In support of this, our efforts suggest that investigating the role of Tubb2b in SOX10-positive cells may reveal novel biology within these cell populations.https://deepblue.lib.umich.edu/bitstream/2027.42/143511/1/12864_2018_Article_4692.pd

    Impaired Function is a Common Feature of Neuropathy‐Associated Glycyl‐t RNA Synthetase Mutations

    Get PDF
    C harcot– M arie– T ooth disease type 2 D ( CMT 2 D ) is an autosomal‐dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl‐t RNA synthetase ( GARS ) gene cause CMT 2 D . GARS is a member of the ubiquitously expressed aminoacyl‐ tRNA synthetase ( ARS ) family and is responsible for charging t RNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss‐of‐function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT ‐associated GARS mutations in t RNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT ‐associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p. S er581 L eu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease‐causing mutation. Together, our data indicate that impaired function is a key component of GARS ‐mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109288/1/humu22681.pd

    An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. <it>SOX10 </it>expression is highly conserved between all vertebrates characterised.</p> <p>Results</p> <p>We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish <it>sox10 </it>gene. Both approaches converged on the 3' end of the conserved 1<sup>st </sup>intron as being critical for spatial patterning of <it>sox10 </it>in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in <it>sox10 </it>regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic <it>sox10 </it>expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results.</p> <p>Conclusion</p> <p>We have thus identified two major sites of <it>sox10 </it>regulation in vertebrates and provided evidence supporting a role for at least three factors in driving <it>sox10 </it>expression in neural crest, otic epithelium and oligodendrocyte domains.</p

    SAP Regulates TH2 Differentiation and PKC-θ-Mediated Activation of NF-κB1

    Get PDF
    AbstractXLP is caused by mutations affecting SAP, an adaptor that recruits Fyn to SLAM family receptors. SAP-deficient mice recapitulate features of XLP, including increased T cell activation and decreased humoral responses post-infection. SAP-deficient T cells also show increased TCR-induced IFN-γ and decreased TH2 cytokine production. We demonstrate that the defect in IL-4 secretion in SAP-deficient T cells is independent of increased IFN-γ production. SAP-deficient cells respond normally to polarizing cytokines, yet show impaired TCR-mediated induction of GATA-3 and IL-4. Examination of TCR signaling revealed normal Ca2+ mobilization and ERK activation in SAP-deficient cells, but decreased PKC-θ recruitment, Bcl-10 phosphorylation, IκB-α degradation, and nuclear NF-κB1/p50 levels. Similar defects were observed in Fyn-deficient cells. SLAM engagement amplified PKC-θ recruitment in wt but not SAP- or Fyn-deficient cells, arguing that a SAP/Fyn-mediated pathway enhances PKC-θ/NF-κB1 activation and suggesting a role for this pathway in TH2 regulation

    Compound heterozygosity for loss‐of‐function FARSB variants in a patient with classic features of recessive aminoacyl‐tRNA synthetase‐related disease

    Full text link
    Aminoacyl‐tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in phenotypically diverse dominant and recessive human diseases. The charging of tRNAPHE with phenylalanine is performed by a tetrameric enzyme that contains two alpha (FARSA) and two beta (FARSB) subunits. To date, mutations in the genes encoding these subunits (FARSA and FARSB) have not been implicated in any human disease. Here, we describe a patient with a severe, lethal, multisystem, developmental phenotype who was compound heterozygous for FARSB variants: p.Thr256Met and p.His496Lysfs*14. Expression studies using fibroblasts isolated from the proband revealed a severe depletion of both FARSB and FARSA protein levels. These data indicate that the FARSB variants destabilize total phenylalanyl‐tRNA synthetase levels, thus causing a loss‐of‐function effect. Importantly, our patient shows strong phenotypic overlap with patients that have recessive diseases associated with other ARS loci; these observations strongly support the pathogenicity of the identified FARSB variants and are consistent with the essential function of phenylalanyl‐tRNA synthetase in human cells. In sum, our clinical, genetic, and functional analyses revealed the first FARSB variants associated with a human disease phenotype and expand the locus heterogeneity of ARS‐related human disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144241/1/humu23424_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144241/2/humu23424.pd

    SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>ERBB3 </it>gene is essential for the proper development of the neural crest (NC) and its derivative populations such as Schwann cells. As with all cell fate decisions, transcriptional regulatory control plays a significant role in the progressive restriction and specification of NC derived lineages during development. However, little is known about the sequences mediating transcriptional regulation of <it>ERBB3 </it>or the factors that bind them.</p> <p>Results</p> <p>In this study we identified three transcriptional enhancers at the <it>ERBB3 </it>locus and evaluated their regulatory potential <it>in vitro </it>in NC-derived cell types and <it>in vivo </it>in transgenic zebrafish. One enhancer, termed <it>ERBB3</it>_MCS6, which lies within the first intron of <it>ERBB3</it>, directs the highest reporter expression <it>in vitro </it>and also demonstrates epigenetic marks consistent with enhancer activity. We identify a consensus SOX10 binding site within <it>ERBB3</it>_MCS6 and demonstrate, <it>in vitro</it>, its necessity and sufficiency for the activity of this enhancer. Additionally, we demonstrate that transcription from the endogenous <it>Erbb3 </it>locus is dependent on Sox10. Further we demonstrate <it>in vitro </it>that Sox10 physically interacts with that <it>ERBB3</it>_MCS6. Consistent with its <it>in vitro </it>activity, we also show that <it>ERBB3</it>_MCS6 drives reporter expression in NC cells and a subset of its derivative lineages <it>in vivo </it>in zebrafish in a manner consistent with <it>erbb3b </it>expression. We also demonstrate, using morpholino analysis, that Sox10 is necessary for <it>ERBB3</it>_MCS6 expression <it>in vivo </it>in zebrafish.</p> <p>Conclusions</p> <p>Taken collectively, our data suggest that <it>ERBB3 </it>may be directly regulated by SOX10, and that this control may in part be facilitated by <it>ERBB3</it>_MCS6.</p

    Identification of Neural Crest and Glial Enhancers at the Mouse Sox10 Locus through Transgenesis in Zebrafish

    Get PDF
    Sox10 is a dynamically regulated transcription factor gene that is essential for the development of neural crest–derived and oligodendroglial populations. Developmental genes often require multiple regulatory sequences that integrate discrete and overlapping functions to coordinate their expression. To identify Sox10 cis-regulatory elements, we integrated multiple model systems, including cell-based screens and transposon-mediated transgensis in zebrafish, to scrutinize mammalian conserved, noncoding genomic segments at the mouse Sox10 locus. We demonstrate that eight of 11 Sox10 genomic elements direct reporter gene expression in transgenic zebrafish similar to patterns observed in transgenic mice, despite an absence of observable sequence conservation between mice and zebrafish. Multiple segments direct expression in overlapping populations of neural crest derivatives and glial cells, ranging from pan-Sox10 and pan-neural crest regulatory control to the modulation of expression in subpopulations of Sox10-expressing cells, including developing melanocytes and Schwann cells. Several sequences demonstrate overlapping spatial control, yet direct expression in incompletely overlapping developmental intervals. We were able to partially explain neural crest expression patterns by the presence of head to head SoxE family binding sites within two of the elements. Moreover, we were able to use this transcription factor binding site signature to identify the corresponding zebrafish enhancers in the absence of overall sequence homology. We demonstrate the utility of zebrafish transgenesis as a high-fidelity surrogate in the dissection of mammalian gene regulation, especially those with dynamically controlled developmental expression

    Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes

    Get PDF
    Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment. Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays. Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals. Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease

    A Rare Myelin Protein Zero (MPZ) Variant Alters Enhancer Activity In Vitro and In Vivo

    Get PDF
    expression. variants. that resides within a previously described SOX10 binding site is associated with decreased enhancer activity, and alters binding of nuclear proteins. Additionally, the genomic segment harboring this variant directs tissue-relevant reporter gene expression in zebrafish. variant within a cis-acting transcriptional regulatory element. While we were unable to implicate this variant in disease onset, our data suggests that similar non-coding sequences should be screened for mutations in patients with neurological disease. Furthermore, our multi-faceted approach for examining the functional significance of non-coding variants can be readily generalized to study other loci important for myelin structure and function
    corecore