127 research outputs found
Hedgehog Pathway Activation Alters Ciliary Signaling in Primary Hypothalamic Cultures
Primary cilia dysfunction has been associated with hyperphagia and obesity in both ciliopathy patients and mouse models of cilia perturbation. Neurons throughout the brain possess these solitary cellular appendages, including in the feeding centers of the hypothalamus. Several cell biology questions associated with primary neuronal cilia signaling are challenging to address in vivo. Here we utilize primary hypothalamic neuronal cultures to study ciliary signaling in relevant cell types. Importantly, these cultures contain neuronal populations critical for appetite and satiety such as pro-opiomelanocortin (POMC) and agouti related peptide (AgRP) expressing neurons and are thus useful for studying signaling involved in feeding behavior. Correspondingly, these cultured neurons also display electrophysiological activity and respond to both local and peripheral signals that act on the hypothalamus to influence feeding behaviors, such as leptin and melanin concentrating hormone (MCH). Interestingly, we found that cilia mediated hedgehog signaling, generally associated with developmental processes, can influence ciliary GPCR signaling (Mchr1) in terminally differentiated neurons. Specifically, pharmacological activation of the hedgehog-signaling pathway using the smoothened agonist, SAG, attenuated the ability of neurons to respond to ligands (MCH) of ciliary GPCRs. Understanding how the hedgehog pathway influences cilia GPCR signaling in terminally differentiated neurons could reveal the molecular mechanisms associated with clinical features of ciliopathies, such as hyperphagia-associated obesity
Impaired Function is a Common Feature of Neuropathy‐Associated Glycyl‐t RNA Synthetase Mutations
C harcot– M arie– T ooth disease type 2 D ( CMT 2 D ) is an autosomal‐dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl‐t RNA synthetase ( GARS ) gene cause CMT 2 D . GARS is a member of the ubiquitously expressed aminoacyl‐ tRNA synthetase ( ARS ) family and is responsible for charging t RNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss‐of‐function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT ‐associated GARS mutations in t RNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT ‐associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p. S er581 L eu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease‐causing mutation. Together, our data indicate that impaired function is a key component of GARS ‐mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109288/1/humu22681.pd
Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes
Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment.
Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays.
Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals.
Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease
Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies
Using linkage analysis and whole-exome sequencing, Safka Brozkova et al. reveal missense mutations in the histidyl-tRNA synthetase gene in 23 patients from four families with axonal and demyelinating neuropathies of varying severity. The mutations cause loss of function in yeast complementation assays and neurotoxicity in a C. elegans mode
A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve
Abstract
Background
Identifying functional non-coding variation is critical for defining the genetic contributions to human disease. While single-nucleotide polymorphisms (SNPs) within cis-acting transcriptional regulatory elements have been implicated in disease pathogenesis, not all cell types have been assessed and functional validations have been limited. In particular, the cells of the peripheral nervous system have been excluded from genome-wide efforts to link non-coding SNPs to altered gene function. Addressing this gap is essential for defining the genetic architecture of diseases that affect the peripheral nerve. We developed a computational pipeline to identify SNPs that affect regulatory function (rSNPs) and evaluated our predictions on a set of 144 regions in Schwann cells, motor neurons, and muscle cells.
Results
We identified 28 regions that display regulatory activity in at least one cell type and 13 SNPs that affect regulatory function. We then tailored our pipeline to one peripheral nerve cell type by incorporating SOX10 ChIP-Seq data; SOX10 is essential for Schwann cells. We prioritized 22 putative SOX10 response elements harboring a SNP and rapidly validated two rSNPs. We then selected one of these elements for further characterization to assess the biological relevance of our approach. Deletion of the element from the genome of cultured Schwann cells—followed by differential gene expression studies—revealed Tubb2b as a candidate target gene. Studying the enhancer in developing mouse embryos revealed activity in SOX10-positive cells including the dorsal root ganglia and melanoblasts.
Conclusions
Our efforts provide insight into the utility of employing strict conservation for rSNP discovery. This strategy, combined with functional analyses, can yield candidate target genes. In support of this, our efforts suggest that investigating the role of Tubb2b in SOX10-positive cells may reveal novel biology within these cell populations.https://deepblue.lib.umich.edu/bitstream/2027.42/143511/1/12864_2018_Article_4692.pd
An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10
<p>Abstract</p> <p>Background</p> <p>A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. <it>SOX10 </it>expression is highly conserved between all vertebrates characterised.</p> <p>Results</p> <p>We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish <it>sox10 </it>gene. Both approaches converged on the 3' end of the conserved 1<sup>st </sup>intron as being critical for spatial patterning of <it>sox10 </it>in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in <it>sox10 </it>regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic <it>sox10 </it>expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results.</p> <p>Conclusion</p> <p>We have thus identified two major sites of <it>sox10 </it>regulation in vertebrates and provided evidence supporting a role for at least three factors in driving <it>sox10 </it>expression in neural crest, otic epithelium and oligodendrocyte domains.</p
Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation
Abstract
Background
The transcription factor SOX10 is essential for all stages of Schwann cell development including myelination. SOX10 cooperates with other transcription factors to activate the expression of key myelin genes in Schwann cells and is therefore a context-dependent, pro-myelination transcription factor. As such, the identification of genes regulated by SOX10 will provide insight into Schwann cell biology and related diseases. While genome-wide studies have successfully revealed SOX10 target genes, these efforts mainly focused on myelinating stages of Schwann cell development. We propose that less-biased approaches will reveal novel functions of SOX10 outside of myelination.
Results
We developed a stringent, computational-based screen for genome-wide identification of SOX10 response elements. Experimental validation of a pilot set of predicted binding sites in multiple systems revealed that SOX10 directly regulates a previously unreported alternative promoter at SOX6, which encodes a transcription factor that inhibits glial cell differentiation. We further explored the utility of our computational approach by combining it with DNase-seq analysis in cultured Schwann cells and previously published SOX10 ChIP-seq data from rat sciatic nerve. Remarkably, this analysis enriched for genomic segments that map to loci involved in the negative regulation of gliogenesis including SOX5, SOX6, NOTCH1, HMGA2, HES1, MYCN, ID4, and ID2. Functional studies in Schwann cells revealed that: (1) all eight loci are expressed prior to myelination and down-regulated subsequent to myelination; (2) seven of the eight loci harbor validated SOX10 binding sites; and (3) seven of the eight loci are down-regulated upon repressing SOX10 function.
Conclusions
Our computational strategy revealed a putative novel function for SOX10 in Schwann cells, which suggests a model where SOX10 activates the expression of genes that inhibit myelination during non-myelinating stages of Schwann cell development. Importantly, the computational and functional datasets we present here will be valuable for the study of transcriptional regulation, SOX protein function, and glial cell biology.http://deepblue.lib.umich.edu/bitstream/2027.42/134677/1/12864_2016_Article_3167.pd
Compound heterozygosity for loss‐of‐function FARSB variants in a patient with classic features of recessive aminoacyl‐tRNA synthetase‐related disease
Aminoacyl‐tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in phenotypically diverse dominant and recessive human diseases. The charging of tRNAPHE with phenylalanine is performed by a tetrameric enzyme that contains two alpha (FARSA) and two beta (FARSB) subunits. To date, mutations in the genes encoding these subunits (FARSA and FARSB) have not been implicated in any human disease. Here, we describe a patient with a severe, lethal, multisystem, developmental phenotype who was compound heterozygous for FARSB variants: p.Thr256Met and p.His496Lysfs*14. Expression studies using fibroblasts isolated from the proband revealed a severe depletion of both FARSB and FARSA protein levels. These data indicate that the FARSB variants destabilize total phenylalanyl‐tRNA synthetase levels, thus causing a loss‐of‐function effect. Importantly, our patient shows strong phenotypic overlap with patients that have recessive diseases associated with other ARS loci; these observations strongly support the pathogenicity of the identified FARSB variants and are consistent with the essential function of phenylalanyl‐tRNA synthetase in human cells. In sum, our clinical, genetic, and functional analyses revealed the first FARSB variants associated with a human disease phenotype and expand the locus heterogeneity of ARS‐related human disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144241/1/humu23424_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144241/2/humu23424.pd
SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer
<p>Abstract</p> <p>Background</p> <p>The <it>ERBB3 </it>gene is essential for the proper development of the neural crest (NC) and its derivative populations such as Schwann cells. As with all cell fate decisions, transcriptional regulatory control plays a significant role in the progressive restriction and specification of NC derived lineages during development. However, little is known about the sequences mediating transcriptional regulation of <it>ERBB3 </it>or the factors that bind them.</p> <p>Results</p> <p>In this study we identified three transcriptional enhancers at the <it>ERBB3 </it>locus and evaluated their regulatory potential <it>in vitro </it>in NC-derived cell types and <it>in vivo </it>in transgenic zebrafish. One enhancer, termed <it>ERBB3</it>_MCS6, which lies within the first intron of <it>ERBB3</it>, directs the highest reporter expression <it>in vitro </it>and also demonstrates epigenetic marks consistent with enhancer activity. We identify a consensus SOX10 binding site within <it>ERBB3</it>_MCS6 and demonstrate, <it>in vitro</it>, its necessity and sufficiency for the activity of this enhancer. Additionally, we demonstrate that transcription from the endogenous <it>Erbb3 </it>locus is dependent on Sox10. Further we demonstrate <it>in vitro </it>that Sox10 physically interacts with that <it>ERBB3</it>_MCS6. Consistent with its <it>in vitro </it>activity, we also show that <it>ERBB3</it>_MCS6 drives reporter expression in NC cells and a subset of its derivative lineages <it>in vivo </it>in zebrafish in a manner consistent with <it>erbb3b </it>expression. We also demonstrate, using morpholino analysis, that Sox10 is necessary for <it>ERBB3</it>_MCS6 expression <it>in vivo </it>in zebrafish.</p> <p>Conclusions</p> <p>Taken collectively, our data suggest that <it>ERBB3 </it>may be directly regulated by SOX10, and that this control may in part be facilitated by <it>ERBB3</it>_MCS6.</p
Identification of Neural Crest and Glial Enhancers at the Mouse Sox10 Locus through Transgenesis in Zebrafish
Sox10 is a dynamically regulated transcription factor gene that is essential for the development of neural crest–derived and oligodendroglial populations. Developmental genes often require multiple regulatory sequences that integrate discrete and overlapping functions to coordinate their expression. To identify Sox10 cis-regulatory elements, we integrated multiple model systems, including cell-based screens and transposon-mediated transgensis in zebrafish, to scrutinize mammalian conserved, noncoding genomic segments at the mouse Sox10 locus. We demonstrate that eight of 11 Sox10 genomic elements direct reporter gene expression in transgenic zebrafish similar to patterns observed in transgenic mice, despite an absence of observable sequence conservation between mice and zebrafish. Multiple segments direct expression in overlapping populations of neural crest derivatives and glial cells, ranging from pan-Sox10 and pan-neural crest regulatory control to the modulation of expression in subpopulations of Sox10-expressing cells, including developing melanocytes and Schwann cells. Several sequences demonstrate overlapping spatial control, yet direct expression in incompletely overlapping developmental intervals. We were able to partially explain neural crest expression patterns by the presence of head to head SoxE family binding sites within two of the elements. Moreover, we were able to use this transcription factor binding site signature to identify the corresponding zebrafish enhancers in the absence of overall sequence homology. We demonstrate the utility of zebrafish transgenesis as a high-fidelity surrogate in the dissection of mammalian gene regulation, especially those with dynamically controlled developmental expression
- …
