27 research outputs found
Circulating levels of Meteorin-like protein in polycystic ovary syndrome: A case-control study
Patients diagnosed with polycystic ovary syndrome (PCOS) are at high risk of developing a myriad of endocrinologic and metabolic derailments. Moreover, PCOS is a leading cause of habitual abortion, also known as recurrent pregnancy loss (RPL). Meteorin-like protein (Metrnl) is a newly discovered adipokine with the potential to counteract the metaflammation. This study aimed at determining the associations of serum Metrnl levels with homocysteine, hs-CRP, and some components of metabolic syndrome in PCOS-RPL and infertile PCOS patients.This case-control study was conducted in 120 PCOS patients (60 PCOSRPL and 60 infertile) and 60 control. Serum hs-CRP and homocysteine were assessed using commercial kits, while adiponectin, Metrnl, FSH, LH, free testosterone and insulin levels were analyzed using ELISA technique. Serum Metrnl levels were found to be lower in PCOS patients when compared to controls (67.98 ± 26.66 vs. 96.47 ± 28.72 pg/mL, P 0.001)). Furthermore, serum adiponectin levels were lower, while free testosterone, fasting insulin, HOMA-IR, homocysteine, and hs-CRP were significantly higher in PCOS group compared to controls. Moreover, serum Metrnl correlated with BMI, adiponectin, and homocysteine in controls, and inversely correlated with FBG, fasting insulin, and HOMA-IR in PCOS group and subgroups. Besides, it inversely correlated with hs-CRP in control, and PCOS group and subgroups. These findings revealed a possible role of Metrnl in the pathogenesis of PCOS and RPL. Nevertheless, there is a necessity for future studies to prove this concept. © 2020 Public Library of Science. All rights reserved
Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease
The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously assessed. Using immunophenotyping, RNA sequencing, and serum cytokine analysis, we analyzed serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12 weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had delayed bystander responses and systemic inflammation that was already evident near symptom onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not correlate with this early pathological response but did correlate with subsequent disease severity. Immune recovery is complex, with profound persistent cellular abnormalities in severe disease correlating with altered inflammatory responses, with signatures associated with increased oxidative phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-6. These late immunometabolic and immune defects may have clinical implications
Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2
Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating
Recommended from our members
Single-cell multi-omics analysis of the immune response in COVID-19
Funder: Lister Institute of Preventive Medicine; doi: https://doi.org/10.13039/501100001255Funder: University College London, Birkbeck MRC Doctoral Training ProgrammeFunder: The Jikei University School of MedicineFunder: Action Medical Research (GN2779)Funder: NIHR Clinical Lectureship (CL-2017-01-004)Funder: NIHR (ACF-2018-01-004) and the BMA FoundationFunder: Chan Zuckerberg Initiative (grant 2017-174169) and from Wellcome (WT211276/Z/18/Z and Sanger core grant WT206194)Funder: UKRI Innovation/Rutherford Fund Fellowship allocated by the MRC and the UK Regenerative Medicine Platform (MR/5005579/1 to M.Z.N.). M.Z.N. and K.B.M. have been funded by the Rosetrees Trust (M944)Funder: Barbour FoundationFunder: ERC Consolidator and EU MRG-Grammar awardsFunder: Versus Arthritis Cure Challenge Research Grant (21777), and an NIHR Research Professorship (RP-2017-08-ST2-002)Funder: European Molecular Biology Laboratory (EMBL)Abstract: Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy
Effects of substances on plants' active compounds on changes in the hormone levels of the pituitary-thyroid axis in hyperthyroidism and hypothyroidism
The roles of thyroid glands in different functions of the body have been well explained such that hypothyroidism and hyperthyroidism can impair the metabolism and normal functions of the body's tissues. Recently, using medicinal plants and their active compounds in treating diseases has attracted attention, and the people's tendency to use these compounds, which are considered to be low risk and to cause no side effect, is increasing. Because changes in the levels of thyroid hormones have considerable effects on body physiology and play a substantial role in the pathogenesis of different diseases, it is necessary to conduct further studies on hyperthyroidism and hypothyroidism and also the effects of plants and their compounds on thyroid hormone secretion rates. This review was conducted to present the information on thyroid hormones, as metabolism-regulating agents, and their association with different diseases as well as the effects of plant-based active compounds on changes in the hormone levels of the pituitary-thyroid axis in hyperthyroidism and hypothyroidism. Results indicated that disrupted serum levels of the thyroid hormones lead to increased incidence of cardiovascular disease, diabetes, depression, menstrual disorders, and kidney disease. The most important effective compounds on these hormones include flavonoids, coumarins, alkaloids, minerals, essential oil components, such as terpinene, gamma-terpinene, and limonene, and antioxidant compounds that directly influence thyroid and change serum levels of the thyroid hormones through inhibiting thyroid peroxidase. Other mechanisms of change in thyroid hormone levels by plant-based compounds are related to decrease in lipoxygenase activity and increase in the activities of catalase and dismutase. It can therefore be argued that using medicinal plants and their compounds can be a novel and efficient approach to develop drugs for thyroid diseases. © 2018 Pharmacognosy Reviews | Published by Wolters Kluwer - Medknow
HLA-DRB, DQA and DQB allele frequencies in Iranian patients with chronic hepatitis B by PCR-SSP
Background: The outcome of acute hepatitis B infection may be influenced by host genetic factors like human leukocyte antigen (HLA). To investigate the association between the HLA-DRB, DQA1 and DQB1 alleles and chronic hepatitis B infection, 50 patients with chronic hepatitis B (based on 6 months positive of HBsAg and HBc antibody and HBeAg and antibody by serological test), were selected from Turkman population in north east of Iran .Allele frequency in patients were compared with a 65 aged and sex match control group from healthy blood donor of that ethnic population. Methods: HLA DRB, DQA1 and DQB1 alleles were determined using polymerase chain reaction based on sequence specific primer (PCR-SSP) method. Allele frequencies in patients and control subjects were compared by Epi-info statistical soft-wear. Results: There was a significant increase and positive association in HLA-DRB1*0301, DQA1*0501 and DQB1*0604 allele frequency in patients group while the frequency of HLA-DRB1*1301, 1501 and DQB1*0401 and DQA1*0401, 0102 were lower in patients than control group and shows negative association. Conclusion: In Iranian Torkman population, HLA DRB1*0301, DQA1*0501 and DQB1*0604 have an important role in susceptibility to chronic hepatitis B infection and HLA DRB1*1301, 1501, DQB1*0401 are associated with protection to chronic hepatitis B infection. Larger case control studies may be helpful to confirm our investigation