159 research outputs found

    The Benefit of High-Resolution Operational Weather Forecasts for Flash Flood Warning

    Get PDF
    In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of loss of human life and infrastructures. Over the last two decades, flash floods have caused damage costing a billion Euros in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available short-range numerical weather forecasts together with a rainfall-runoff model can be used for early indication of the occurrence of flash floods. One of the challenges in flash flood forecasting is that the watersheds are typically small, and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground measurements. The lack of observations in most flash flood prone basins, therefore, necessitates the development of a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area, with lead times of the order of weather forecasts. This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. This paper describes the main aspects of using numerical weather forecasting for flash flood forecasting, together with a threshold - exceedance. As a case study the severe flash flood event which took place on 8¿9 September 2002 has been chosen. Short-range weather forecasts, from the Lokalmodell of the German national weather service, are used as input for the LISFLOOD model, a hybrid between a conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to determine flash floods more than 24 hours in advance.JRC.H.7-Land management and natural hazard

    The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes

    Get PDF
    Summary This paper presents a detailed analysis of the September 8-9, 2002 flash flood event in the Gard region (southern France) using two distributed hydrological models: CVN built within the LIQUID® hydrological platform and MARINE. The models differ in terms of spatial discretization, infiltration and water redistribution representation, and river flow transfer. MARINE can also account for subsurface lateral flow. Both models are set up using the same available information, namely a DEM and a pedology map. They are forced with high resolution radar rainfall data over a set of 18 sub-catchments ranging from 2.5 to 99 km2 and are run without calibration. To begin with, models simulations are assessed against post field estimates of the time of peak and the maximum peak discharge showing a fair agreement for both models. The results are then discussed in terms of flow dynamics, runoff coefficients and soil saturation dynamics. The contribution of the subsurface lateral flow is also quantified using the MARINE model. This analysis highlights that rainfall remains the first controlling factor of flash flood dynamics. High rainfall peak intensities are very influential of the maximum peak discharge for both models, but especially for the CVN model which has a simplified overland flow transfer. The river bed roughness also influences the peak intensity and time. Soil spatial representation is shown to have a significant role on runoff coefficients and on the spatial variability of saturation dynamics. Simulated soil saturation is found to be strongly related with soil depth and initial storage deficit maps, due to a full saturation of most of the area at the end of the event. When activated, the signature of subsurface lateral flow is also visible in the spatial patterns of soil saturation with higher values concentrating along the river network. However, the data currently available do not allow the assessment of both patterns. The paper concludes with a set of recommendations for enhancing field observations in order to progress in process understanding and gather a larger set of data to improve the realism of distributed models

    Assessment of Spatio-Temporal Changes of Land Use and Land Cover over South-Western African Basins and Their Relations with Variations of Discharges

    Get PDF
    West African basins play a vital role in the socio-economic development of the region. They are mostly trans-boundary and sources of different land use practices. This work attempts to assess the spatio-temporal land use and land cover changes over three South Western African basins (Volta, Mono and Sassandra basins) and their influence on discharge. The land use and land cover maps of each basin were developed for 1988, 2002 and 2016. The results show that all the studied basins present an increase in water bodies, built-up, agricultural land and a decline in vegetative areas. These increases in water bodies and land use are as a result of an increase in small reservoirs, of dugouts and of dam constructions. However, the decline in some vegetative clusters could be attributed to the demographic and socio-economic growth as expressed by the expansion of agriculture and urbanization. The basic statistical analysis of precipitation and discharge data reveals that the mean annual discharge varies much more than the total annual precipitation at the three basins. For instance, in the entire Volta basin, the annual precipitation coefficient of variation (CV) is 10% while the annual discharge CV of Nawuni, Saboba and Bui are 43.6%, 36.51% and 47.43%, respectively. In Mono basin, the annual precipitation CV is 11.5% while the Nangbeto and Athieme annual discharge CV are 37.15% and 46.60%, respectively. The annual precipitation CV in Sassandra basin is 7.64% while the annual discharge CV of Soubre and Dakpadou are 29.41% and 37%, respectively. The discharge varies at least three times much more than the precipitation in the studied basins. The same conclusion was found for all months except the driest months (December and January). We showed that this great variation in discharge is mainly due to land use and land cover changes. Beside the hydrological modification of the land use and land cover changes, the climate of the region as well as the water quality and availability and the hydropower generation may be impacted by these changes in land surfaces conditions. Therefore, these impacts should be further assessed to implement appropriate climate services and measures for a sustainable land use and water management

    The 8 and 9 September 2002 flash flood event in France: a model intercomparison

    Get PDF
    Within the framework of the European Interreg IIIb Medocc program, the HYDROPTIMET project aims at the optimization of the hydrometeorological forecasting tools in the context of intense precipitation within complex topography. Therefore, some meteorological forecast models and hydrological models were tested on four Mediterranean flash-flood events. One of them occured in France where the South-eastern ridge of the French “Massif Central”, the Gard region, experienced a devastating flood on 8 and 9 September 2002. 24 people were killed during this event and the economic damage was estimated at 1.2 billion euros. To built the next generation of the hydrometeorological forecasting chain that will be able to capture such localized and fast events and the resulting discharges, the forecasted rain fields might be improved to be relevant for hydrological purposes. In such context, this paper presents the results of the evaluation methodology proposed by Yates et al. (2005) that highlights the relevant hydrological scales of a simulated rain field. Simulated rain fields of 7 meteorological model runs concerning with the French event are therefore evaluated for different accumulation times. The dynamics of these models are either based on non-hydrostatic or hydrostatic equation systems. Moreover, these models were run under different configurations (resolution, initial conditions). The classical score analysis and the areal evaluation of the simulated rain fields are then performed in order to put forward the main simulation characteristics that improve the quantitative precipitation forecast. The conclusions draw some recommendations on the value of the quantitative precipitation forecasts and way to use it for quantitative discharge forecasts within mountainous areas

    Contribution à l'étude des processus atmosphériques de méso-échelle en zone de relief marqué

    No full text
    Depuis 1992, mon activité scientifique est axée vers l'étude des basses couches de l'atmosphère où on s'attache à comprendre et à modéliser le forçage surfacique (quantité de mouvement, flux de chaleur latent et sensible, topographie) sur la dynamique et la microphysique de l'atmosphère dans ses premiers kilomètres. Les mécanismes de transport vertical dans la couche limite atmosphérique contrôlent la qualité de l'air dans les zones urbanisées, la répartition spatio-temporelle des précipitations et le transport de la neige dans les régions montagneuses. Par exemple, l'ozone troposphérique, issu d'une réaction entre hydrocarbures et oxydes d'azote alimentée par le rayonnement solaire, est un oxydant redoutable qui s'attaque à la végétation et au système respiratoire humain. Les valeurs maximums sont enregistrées dans les périphéries des villes et non dans les zones où les émissions des polluants primaires sont les plus fortes. Pour mieux prévoir (et donc à terme, mieux gérer), la dynamique des basses couches doit faire l'objet d'une attention toute particulière.Il en est de même pour l'aménagement du territoire face au risque d'inondation. La réponse hydrologique à un forçage pluviométrique sera d'autant plus pertinent en terme de prévision que le signal pluviométrique précis (en quantité et en localisation).Ces deux problèmes sont des questions où la demande sociétale est forte, et les mécanismes qui y sont associés sont des problèmes fondamentaux qui doivent encore retenir toute notre attention. Rappelons que la Loi sur L'air et L'utilisation Rationnelle de l'Energie (dite loi Lepage, mise en application au 1er janvier 1997) stipule dans son premier article « ...Cette action d'intérêt général consiste à prévenir, à surveiller, à réduire ou à supprimer les pollutions atmosphériques... » car il "est reconnu à chacun le droit à respirer un air qui ne nuise pas à sa santé". La Loi sur l'Eau (3 janvier 1992) a pour objectif de proposer un cadre législatif pour une gestion équilibrée, en autre, « de la conservation et du libre écoulement des eaux et de la protection contre les inondations ».La méconnaissance de ces mécanismes liés au transport et au mélange dans les basses couches entraîne des difficultés importantes lorsque l'on souhaite proposer des outils de gestion et de prévention de la qualité de l'air ou lorsque l'on souhaite affiner les prévisions à petite échelle de la répartition spatio-temporelle des précipitations. Mon outil d'investigation est la modélisation non-hydrostatique tridimensionnelle de l'atmosphère. Pour les applications dédiées à l'évaluation de la qualité de l'air comme pour celles dédiées au risque d'inondation, l'imbrication d'échelles ainsi que la définition des interfaces sont des problématiques communes. A ces échelles, l'interaction sol – atmosphère est importante à bien reproduire à travers toutes les hétérogénéités que composent un sol urbain (succession de rues hétérogènes) ou un massif montagneux (délimité par un système de vallées). Le forçage des échelles supérieures doit, également, rendre compte du milieu atmosphérique non fermé et de son caractère fortement instationnaire et turbulent.Je me suis attachée à comprendre les mécanismes physiques liés au transport vertical et le rôle de la stratification dans le développement de ces mouvements ainsi que les processus liés au mélange des quantités scalaires passifs (traceur) ou qui interagissent avec la dynamique (microphysique). Les échelles caractéristiques sont celles d'une vallée comme celle de Grenoble ou d'un massif montagneux comme celui des Cévennes.Compte tenu du rôle important de la stratification atmosphérique dans les processus physiques étudiés et de son caractère fortement instationnaire et inhomogène en espace aux échelles proposées, il me semble raisonnable d'aborder cette thématique pour deux études dissociées où la stratification agit différemment : (i) transport d'un traceur passif dans une vallée et effet de la stratification stable, (ii) forçage topographique sur un système précipitant (stratification instable). A travers ce document, je souhaiterai synthétiser ma contribution personnelle à ces questions en n'oubliant pas que ma démarche s'est enrichie des nombreuses collaborations que j'ai pu avoir avec des chercheurs confirmés et à travers les divers encadrements de jeunes chercheurs qui ont rythmé ces 10 dernières années

    Variabilité des flux turbulents de surface au sein du bassin versant d'Ara au Bénin

    No full text
    La circulation atmosphérique en Afrique de l'Ouest est caractérisée par des vents de sud-ouest (mousson) pendant la saison humide et par des vents de nord-est (harmattan) pendant la saison sèche. Cette alternance des saisons est due aux variations de pression liée à l'état des surfaces (rugosité, albédo, végétation) en réaction au forçage solaire. Ces mêmes états de surface génèrent une variabilité de flux turbulents de surface et des circulations secondaires qui rendent complexes les analyses des mesures effectuées sur place en vue de documenter les interactions surface-atmosphère. La modélisation fine échelle (LES) couramment utilisée dans l'étude de la couche limite atmosphérique est requise pour pouvoir palier à ces difficultés en raison de sa capacité à prendre en compte les flux turbulents en 3D et sur topographie complexe. Notre site d'étude est le bassin versant d'ARA située au Nord du Bénin dans un contexte Soudanien avec des propriétés de surface variables. Une analyse climatique est effectuée sur la base des observations de radiosondage, de radar UHF et de stations au sol afin d'extraire des données composites représentatives des saisons sèche et humide. Ces données composites ont servi par la suite à forcer le modèle Méso-NH dans sa version LES. Pour pouvoir caractériser les échelles de longueur des flux turbulents de surface relatives aux saisons sèche et humide, les données standard de forçage de surface de Méso-NH que sont le relief GTOPO30 (1km de résolution) et la végétation ECOCLIMAP (1km de résolution) ont été respectivement remplacer par le SRTM (90m de résolution) et les données de SPOT/HRV (20m de résolution) reéchantillonné à 90m de résolution. A l'aide d'outils statistiques comme la variographie 2D et le suivi Lagrangien, il ressort que la variabilité spatiale de la chaleur sensible H est gouvernée par le couple vent-relief tandis que celle de la chaleur latente E est difficile à mettre en lien sur végétation hétérogène (SPOT/HRV) en saison sèche. En saison humide, la variabilité spatiale du champ H dépend du vent tandis que celle du champ E dépend de la végétation. Cette étude révèle dans tous les cas que les échelles caractéristiques de ces deux champs diffèrent dans les mêmes conditions de forçage de surface et atmosphérique.West Africa atmosphere circulation is characterized by south-westerly wind (monsoon regime) during the wet season and north-easterly wind (harmattan regime) during the dry season. This alternation of wind regime is due to surface pressure variability linked to surface heterogeneities. Surface heterogeneities generate surface flux variability, secondary circulation and make complex analysis when trying to document surface-atmosphere feedbacks. LES modelling usually used for boundary-layer studies due to its potential to take into account 3D turbulence over complex topography, is used here to overcome these difficulties. Our site of interest is located in north of Benin characterized by Soudanian climate and heterogeneous surface properties. Climate analysis are first performed with radiosoundings, UHF radar, and EC station data in order to extract composite profile representing dry and wet season.. These composite profiles are then used to force atmosphere part of the Méso-NH LES model. To characterize turbulent fluxes length scales relative to dry and wet season, standard surface forcing data with Méso-NH like GTOPO30 orography (1km ) and ECOCLIMAP vegetation (1km) are respectively replaced by SRTM (90m) and SPOT/HRV vegetation data (20m) resampled to 90m. Along with statistical tools like 2D variography and Lagrangian, we notice that during dry season on heterogeneous vegetation, sensible heat flux H is more driven by wind and orography while we not able to discuss the latent heat flux E case. During wet season with the same surface forcing, it appears that H is driven by wind while E is more dependent to vegetation variability. Our study concludes in all case that H and E are not characterized by the same length scale.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Social Impacts: Integrating dynamic social vulnerability in impact-based weather forecasting

    No full text
    International audienceWhat is the role of human exposure and vulnerability in weather-related disasters? Direct exposure of human beings to changing weather patterns or to their indirect effects such as changes in water, food, livelihoods and infrastructures can cause major social impacts in terms of death, disability and suffering. According to the United Nations Intergovernmental Panel on Climate Change (IPCC, 2012), extreme weather hazards become weather disasters when threatening the normal functioning of a community or a society 'due to hazardous physical events interacting with vulnerable social conditions, leading to widespread adverse human, material, economic, or environmental effects that require immediate emergency response'. The last 20 years, unexpected or unusual severe weather has been associated with more than 12,000 extreme weather events leading to catastrophic naturals disasters such as storms, floods and heatwaves worldwide (Eckstein et al., 2020). In their latest report-the 15th edition of the Germanwatch Global Climate Risk Index-, Eckstein et al. (2020) estimate about 500,000 deaths as a direct result of those weather hazards between 1999 and 2018. If social impacts refer to a broad spectrum of disruptions, damages, and human health issues, this chapter will specifically deal with direct adverse human consequences which are the main reason for developing forecasting capabilities and early warning systems. In the present chapter, the terms human risk or human impacts may be used interchangeably, with a focus on the likelihood of loss of life during weather crisis. In particular, we address social impacts from extreme weather types discussed in Chapter 2 by Nikolopoulos and Astitha (ref to this book) (e.g., heavy rainfall), not mentioning impacts from slow-onset weather and climate processes such as rising temperatures, ice melting and sea-level rise that have been largely associated with important disruptions on ecosystems, transformations in biodiversity and agriculture, and degradation of coastal environments
    corecore