15 research outputs found

    Inhibition of Insulin-Regulated Aminopeptidase by Imidazo [1,5-α]pyridines—Synthesis and Evaluation

    No full text
    Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 ”M. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound’s metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding

    Synthesis, Evaluation and Proposed Binding Pose of Substituted Spiro-Oxindole Dihydroquinazolinones as IRAP Inhibitors

    No full text
    Insulin‐regulated aminopeptidase (IRAP) is a new potential macromolecular target for drugs aimed for treatment of cognitive disorders. Inhibition of IRAP by angiotensin IV (Ang IV) improves the memory and learning in rats. The majority of the known IRAP inhibitors are peptidic in character and suffer from poor pharmacokinetic properties. Herein, we present a series of small non‐peptide IRAP inhibitors derived from a spiro‐oxindole dihydroquinazolinone screening hit (pIC50 5.8). The compounds were synthesized either by a simple microwave (MW)‐promoted three‐component reaction, or by a two‐step one‐pot procedure. For decoration of the oxindole ring system, rapid MW‐assisted Suzuki‐Miyaura cross‐couplings (1 min) were performed. A small improvement of potency (pIC50 6.6 for the most potent compound) and an increased solubility could be achieved. As deduced from computational modelling and MD simulations it is proposed that the S‐configuration of the spiro‐oxindole dihydroquinazolinones accounts for the inhibition of IRAP

    Monitoring drug–target interactions through target engagement-mediated amplification on arrays and in situ

    No full text
    Drugs are designed to bind their target proteins in physiologically relevant tissues and organs to modulate biological functions and elicit desirable clinical outcomes. Information about target engagement at cellular and subcellular resolution is therefore critical for guiding compound optimization in drug discovery, and for probing resistance mechanisms to targeted therapies in clinical samples. We describe a target engagement-mediated amplification (TEMA) technology, where oligonucleotide-conjugated drugs are used to visualize and measure target engagement in situ, amplified via rolling-circle replication of circularized oligonucleotide probes. We illustrate the TEMA technique using dasatinib and gefitinib, two kinase inhibitors with distinct selectivity profiles. In vitro binding by the dasatinib probe to arrays of displayed proteins accurately reproduced known selectivity profiles, while their differential binding to fixed adherent cells agreed with expectations from expression profiles of the cells. We also introduce a proximity ligation variant of TEMA to selectively investigate binding to specific target proteins of interest. This form of the assay serves to improve resolution of binding to on- and off-target proteins. In conclusion, TEMA has the potential to aid in drug development and clinical routine by conferring valuable insights in drug–target interactions at spatial resolution in protein arrays, cells and in tissues

    Membrane-depolarizing channel blockers induce selective glioma cell death by impairing nutrient transport and unfolded protein/amino acid responses.

    No full text
    Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstreamsignaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas

    Identification of Triazolothiadiazoles as Potent Inhibitors of the dCTP Pyrophosphatase 1

    No full text
    The dCTP pyrophosphatase 1 (dCTPase) is involved in the regulation of the cellular dNTP pool and has been linked to cancer progression. Here we report on the discovery of a series of 3,6-disubstituted triazolo­thiadiazoles as potent dCTPase inhibitors. Compounds <b>16</b> and <b>18</b> display good correlation between enzymatic inhibition and target engagement, together with efficacy in a cellular synergy model, deeming them as a promising starting point for hit-to-lead development

    Identification of Triazolothiadiazoles as Potent Inhibitors of the dCTP Pyrophosphatase 1

    No full text
    The dCTP pyrophosphatase 1 (dCTPase) is involved in the regulation of the cellular dNTP pool and has been linked to cancer progression. Here we report on the discovery of a series of 3,6-disubstituted triazolo­thiadiazoles as potent dCTPase inhibitors. Compounds <b>16</b> and <b>18</b> display good correlation between enzymatic inhibition and target engagement, together with efficacy in a cellular synergy model, deeming them as a promising starting point for hit-to-lead development
    corecore